910 research outputs found

    Effect of a mobile app intervention on vegetable consumption in overweight adults: a randomized controlled trial.

    Get PDF
    BACKGROUND: Mobile applications (apps) have been heralded as transformative tools to deliver behavioral health interventions at scale, but few have been tested in rigorous randomized controlled trials. We tested the effect of a mobile app to increase vegetable consumption among overweight adults attempting weight loss maintenance. METHODS: Overweight adults (n=135) aged 18-50 years with BMI=28-40 kg/m2 near Stanford, CA were recruited from an ongoing 12-month weight loss trial (parent trial) and randomly assigned to either the stand-alone, theory-based Vegethon mobile app (enabling goal setting, self-monitoring, and feedback and using "process motivators" including fun, surprise, choice, control, social comparison, and competition) or a wait-listed control condition. The primary outcome was daily vegetables servings, measured by an adapted Harvard food frequency questionnaire (FFQ) 8 weeks post-randomization. Daily vegetable servings from 24-hour dietary recalls, administered by trained, certified, and blinded interviewers 5 weeks post-randomization, was included as a secondary outcome. All analyses were conducted according to principles of intention-to-treat. RESULTS: Daily vegetable consumption was significantly greater in the intervention versus control condition for both measures (adjusted mean difference: 2.0 servings; 95% CI: 0.1, 3.8, p=0.04 for FFQ; and 1.0 servings; 95% CI: 0.2, 1.9; p=0.02 for 24-hour recalls). Baseline vegetable consumption was a significant moderator of intervention effects (p=0.002) in which effects increased as baseline consumption increased. CONCLUSIONS: These results demonstrate the efficacy of a mobile app to increase vegetable consumption among overweight adults. Theory-based mobile interventions may present a low-cost, scalable, and effective approach to improving dietary behaviors and preventing associated chronic diseases. TRIAL REGISTRATION: ClinicalTrials.gov NCT01826591. Registered 27 March 2013

    Development of a low-maintenance measurement approach to continuously estimate methane emissions: a case study

    Get PDF
    The chemical breakdown of organic matter in landfills represents a significant source of methane gas (CH4). Current estimates suggest that landfills are responsible for between 3% and 19% of global anthropogenic emissions. The net CH4 emissions resulting from biogeochemical processes and their modulation by microbes in landfills are poorly constrained by imprecise knowledge of environmental constraints. The uncertainty in absolute CH4 emissions from landfills is therefore considerable. This study investigates a new method to estimate the temporal variability of CH4 emissions using meteorological and CH4 concentration measurements downwind of a landfill site in Suffolk, UK from July to September 2014, taking advantage of the statistics that such a measurement approach offers versus shorter-term, but more complex and instantaneously accurate, flux snapshots. Methane emissions were calculated from CH4 concentrations measured 700 m from the perimeter of the landfill with observed concentrations ranging from background to 46.4 ppm. Using an atmospheric dispersion model, we estimate a mean emission flux of 709 μg m−2 s−1 over this period, with a maximum value of 6.21 mg m−2 s−1, reflecting the wide natural variability in biogeochemical and other environmental controls on net site emission. The emissions calculated suggest that meteorological conditions have an influence on the magnitude of CH4 emissions. We also investigate the factors responsible for the large variability observed in the estimated CH4 emissions, and suggest that the largest component arises from uncertainty in the spatial distribution of CH4 emissions within the landfill area. The results determined using the low-maintenance approach discussed in this paper suggest that a network of cheaper, less precise CH4 sensors could be used to measure a continuous CH4 emission time series from a landfill site, something that is not practical using far-field approaches such as tracer release methods. Even though there are limitations to the approach described here, this easy, low-maintenance, low-cost method could be used by landfill operators to estimate time-averaged CH4 emissions and their impact downwind by simultaneously monitoring plume advection and CH4 concentrations

    Assessing exhibition swine as potential disseminators of infectious disease through the detection of five respiratory pathogens at agricultural exhibitions

    Get PDF
    International audienceAbstractWidespread geographic movement and extensive comingling of exhibition swine facilitates the spread and transmission of infectious pathogens. Nasal samples were collected from 2862 pigs at 102 exhibitions and tested for five pathogens. At least one pathogen was molecularly detected in pigs at 63 (61.8%) exhibitions. Influenza A virus was most prevalent and was detected in 498 (17.4%) samples. Influenza D virus was detected in two (0.07%) samples. More than one pathogen was detected in 165 (5.8%) samples. Influenza A virus remains a top threat to animal and human health, but other pathogens may be disseminated through the exhibition swine population

    Participatory rangeland management toolkit for Kenya

    Get PDF

    Clinical utility of PKD2 mutation testing in a polycystic kidney disease cohort attending a specialist nephrology out-patient clinic.

    Get PDF
    BACKGROUND: ADPKD affects approximately 1:1000 of the worldwide population. It is caused by mutations in two genes, PKD1 and PKD2. Although allelic variation has some influence on disease severity, genic effects are strong, with PKD2 mutations predicting later onset of ESRF by up to 20 years. We therefore screened a cohort of ADPKD patients attending a nephrology out-patient clinic for PKD2 mutations, to identify factors that can be used to offer targeted gene testing and to provide patients with improved prognostic information. METHODS: 142 consecutive individuals presenting to a hospital nephrology out-patient service with a diagnosis of ADPKD and CKD stage 4 or less were screened for mutations in PKD2, following clinical evaluation and provision of a detailed family history (FH). RESULTS: PKD2 mutations were identified in one fifth of cases. 12% of non-PKD2 patients progressed to ESRF during this study whilst none with a PKD2 mutation did (median 38.5 months of follow-up, range 16-88 months, p < 0.03). A significant difference was found in age at ESRF of affected family members (non-PKD2 vs. PKD2, 54 yrs vs. 65 yrs; p < 0.0001). No PKD2 mutations were identified in patients with a FH of ESRF occurring before age 50 yrs, whereas a PKD2 mutation was predicted by a positive FH without ESRF. CONCLUSIONS: PKD2 testing has a clinically significant detection rate in the pre-ESRF population. It did not accurately distinguish those individuals with milder renal disease defined by stage of CKD but did identify a group less likely to progress to ESRF. When used with detailed FH, it offers useful prognostic information for individuals and their families. It can therefore be offered to all but those whose relatives have developed ESRF before age 50

    Auto-Antibodies to β-F1-ATPase and Vimentin in Malignant Mesothelioma

    Get PDF
    Patients with Malignant Mesothelioma (MM) develop unidentified auto-antibodies to MM tumour antigens. This study was conducted to identify the targets of MM patient auto-antibodies in order to try to understand more of the anti-tumour response and to determine if these antibodies might be helpful for diagnosis or prognostication. Using MM patient sera in a Western immunoblott screening strategy, no common immunoreactive proteins were identified. The sera from one long-term survivor recognised a protein band of 50–60 kDa present in cell lysates from four of five MM cell lines tested. The immunoreactive proteins in this band were identified by 2D electrophoretic separation of a MM cell line protein lysate, followed by analysis of excised immunoreactive proteins on a MALDI TOF mass spectrometer and peptide mass fingerprinting. The immunoreactive proteins identified were vimentin (accession gi55977767) and the ATP synthase (F1-ATPase) beta chain (accession gi114549 and gi47606749). ELISA assays were developed for antibodies to these proteins. Neither vimentin (median and 95% CI 0.346; 0.32–0.468 for MM patients, 0.327; 0.308–0.428 for controls) nor ß-F1-ATPase (0.257; 0.221–0.453 for MM patients, 0.263; 0.22–0.35 for controls) showed significant differences in autoantibody levels between a group of MM patients and controls. Using a dichotomized antibody level (high, low) for these targets we demonstrated that vimentin antibody levels were not associated with survival. In contrast, high ß-F1-ATPase antibody levels were significantly associated with increased median survival (18 months) compared to low ß F1 ATPase antibody levels (9 months; p = 0.049). Immunohistochemical analysis on a MM tissue microarray showed cytoplasmic staining in 28 of 33 samples for vimentin and strong cytoplasmic staining in14 and weak in 16 samples for ß-F1-ATPase. Therefore antibodies to neither vimentin nor ß-F1-ATPase are useful for differential diagnosis of MM, however high antibody levels to ß-F1-ATPase may be associated with increased survival and this warrants further investigation

    Assessment of Bones Deficient in Fibrillin-1 Microfibrils Reveals Pronounced Sex Differences.

    Get PDF
    Defects in the extracellular matrix protein fibrillin-1 that perturb transforming growth factor beta (TGFβ) bioavailability lead to Marfan syndrome (MFS). MFS is an autosomal-dominant disorder, which is associated with connective tissue and skeletal defects, among others. To date, it is unclear how biological sex impacts the structural and functional properties of bone in MFS. The aim of this study was to investigate the effects of sex on bone microarchitecture and mechanical properties in mice with deficient fibrillin-1, a model of human MFS. Bones of 11-week-old male and female Fbn1mgR/mgR mice were investigated. Three-dimensional micro-computed tomography of femora and vertebrae revealed a lower ratio of trabecular bone volume to tissue volume, reduced trabecular number and thickness, and greater trabecular separation in females vs. males. Three-point bending of femora revealed significantly lower post-yield displacement and work-to-fracture in females vs. males. Mechanistically, we found higher Smad2 and ERK1/2 phosphorylation in females vs. males, demonstrating a greater activation of TGFβ signaling in females. In summary, the present findings show pronounced sex differences in the matrix and function of bones deficient in fibrillin-1 microfibrils. Consequently, sex-specific analysis of bone characteristics in patients with MFS may prove useful in improving the clinical management and life quality of these patients, through the development of sex-specific therapeutic approaches

    Silicon and Nickel Enrichment in Planet-Host Stars: Observations and Implications for the Core-Accretion Theory of Planet Formation

    Full text link
    We present evidence that stars with planets exhibit statistically significant silicon and nickel enrichment over the general metal-rich population. We also present simulations which predict silicon enhancement of planet hosts within the context of the core-accretion hypothesis for giant planet formation. Because silicon and oxygen are both alpha elements, [Si/Fe] traces [O/Fe], so the silicon enhancement in planet hosts predicts that these stars are oxygen-rich as well. We present new numerical simulations of planet formation by core accretion that establish the timescale on which a Jovian planet reaches rapid gas accretion, t_rga, as a function of solid surface density sigma_solid: (t_rga / 1 Myr) = (sigma_solid / 25.0 g cm^{-2})^{-1.44}. This relation enables us to construct Monte Carlo simulations that predict the fraction of star-disk systems that form planets as a function of [Fe/H], [Si/Fe], disk mass, outer disk radius and disk lifetime. Our simulations reproduce both the known planet-metallicity correlation and the planet-silicon correlation reported in this paper. The simulations predict that 16% of Solar-type stars form Jupiter-mass planets, in agreement with 12% predicted from extrapolation of the observed planet frequency-semimajor axis distribution. Although a simple interpretation of core accretion predicts that the planet-silicon correlation should be much stronger than the planet-nickel correlation, we observe the same degree of silicon and nickel enhancement in planet hosts. If this result persists once more planets have been discovered, it might indicate a complexity in the chemistry of planet formation beyond the simple accumulation of solids in the core accretion theory.Comment: 45 pages, including 12 figures, accepted for publication in the Astrophysical Journa
    corecore