39 research outputs found

    Why Are Ring Galaxies Interesting?

    Get PDF
    Compared with ordinary spirals, the ISM in ring galaxies experiences markedly different physical conditions and evolution. As a result, ring galaxies provide interesting perspectives on the triggering/quenching of large scale star formation and the destructive effects of massive stars on molecular cloud complexes. We use high resolution radio, sub-millimeter, infrared, and optical data to investigate the role of gravitational stability in star formation regulation, factors influencing the ISM's molecular fraction, and evidence of peculiar star formation laws and efficiencies in two highly evolved ring galaxies: Cartwheel and the Lindsay-Shapley ring.Comment: 6 pages with 4 figures (2 color). To appear in the conference proceedings for "Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies"

    Molecular Gas and Star Formation in the Cartwheel

    Get PDF
    Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(J=1-0) observations are used to study the cold molecular ISM of the Cartwheel ring galaxy and its relation to HI and massive star formation (SF). CO moment maps find (2.69±0.05)×109(2.69\pm0.05)\times10^{9} M⊙_{\odot} of H2_2 associated with the inner ring (72%) and nucleus (28%) for a Galactic I(CO)-to-N(H2) conversion factor (αCO\alpha_{\rm CO}). The spokes and disk are not detected. Analysis of the inner ring's CO kinematics show it to be expanding (Vexp=68.9±4.9V_{\rm exp}=68.9\pm4.9 km s−1^{-1}) implying an ≈70\approx70 Myr age. Stack averaging reveals CO emission in the starburst outer ring for the first time, but only where HI surface density (ΣHI\Sigma_{\rm HI}) is high, representing MH2=(7.5±0.8)×108M_{\rm H_2}=(7.5\pm0.8)\times10^{8} M⊙_{\odot} for a metallicity appropriate αCO\alpha_{\rm CO}, giving small ΣH2\Sigma_{\rm H_2} (3.73.7 M⊙_{\odot} pc−2^{-2}), molecular fraction (fmol=0.10f_{\rm mol}=0.10), and H2_2 depletion timescales (τmol≈50−600\tau_{\rm mol} \approx50-600 Myr). Elsewhere in the outer ring ΣH2≲2\Sigma_{\rm H_2}\lesssim 2 M⊙_{\odot} pc−2^{-2}, fmol≲0.1f_{\rm mol}\lesssim 0.1 and τmol≲140−540\tau_{\rm mol}\lesssim 140-540 Myr (all 3σ3\sigma). The inner ring and nucleus are H2_2-dominated and are consistent with local spiral SF laws. ΣSFR\Sigma_{\rm SFR} in the outer ring appears independent of ΣH2\Sigma_{\rm H_2}, ΣHI\Sigma_{\rm HI} or ΣHI+H2\Sigma_{\rm HI+H_2}. The ISM's long confinement in the robustly star forming rings of the Cartwheel and AM0644-741 may result in either a large diffuse H2_2 component or an abundance of CO-faint low column density molecular clouds. The H2_2 content of evolved starburst rings may therefore be substantially larger. Due to its lower ΣSFR\Sigma_{\rm SFR} and age the Cartwheel's inner ring has yet to reach this state. Alternately, the outer ring may trigger efficient SF in an HI-dominated ISM.Comment: 10-pages text; 5-figure

    Spitzer Mid-infrared Upper Limits on Anomalous X-Ray Pulsars 1E 1048.1-5937, 1RXS J170849-400910, and XTE J1810-197

    Get PDF
    We report on mid-infrared imaging observations of the anomalous X-ray pulsars (AXPs) 1E 1048.1-5937, 1RXS J170849-400910, and XTE J1810-197. The observations were carried out at 4.5 and 8.0 microns with the Infrared Array Camera and at 24 microns with the Multiband Imaging Photometer on the Spitzer Space Telescope. No mid-infrared counterparts were detected. As infrared emission from AXPs may be related to their X-ray emission either via the magnetosphere or via a dust disk, we compare the derived upper limits on the infrared/X-ray flux ratios of the AXPs to the same ratio for 4U 0142+61, an AXP previously detected in the mid-infrared range. The comparison indicates that our three non-detections are consistent with their relatively low X-ray fluxes. For XTE J1810-197, our upper limits set a constraint on its rising radio/millimeter energy spectrum, suggesting a spectral break between 1.5×1011\times 10^{11}--6×1013\times10^{13} Hz

    Detection of [O III] at z~3: A Galaxy above the Main Sequence, Rapidly Assembling its Stellar Mass

    Full text link
    We detect bright emission in the far infrared fine structure [O III] 88μ\mum line from a strong lensing candidate galaxy, H-ATLAS J113526.3-014605, hereafter G12v2.43, at z=3.127, using the 2nd\rm 2^{nd} generation Redshift (z) and Early Universe Spectrometer (ZEUS-2) at the Atacama Pathfinder Experiment Telescope (APEX). This is only the fifth detection of this far-IR line from a sub-millimeter galaxy at the epoch of galaxy assembly. The observed [O III] luminosity of 7.1×109 (10μ) L⊙ 7.1\times10^{9}\,\rm(\frac{10}{\mu})\,\rm{L_{\odot}}\, likely arises from HII regions around massive stars, and the amount of Lyman continuum photons required to support the ionization indicate the presence of (1.2−5.2)×106 (10μ)(1.2-5.2)\times10^{6}\,\rm(\frac{10}{\mu}) equivalent O5.5 or higher stars; where μ\mu would be the lensing magnification factor. The observed line luminosity also requires a minimum mass of ∼2×108 (10μ) M⊙ \sim 2\times 10^{8}\,\rm(\frac{10}{\mu})\,\rm{M_{\odot}}\, in ionized gas, that is 0.33%0.33\% of the estimated total molecular gas mass of 6×1010 (10μ) M⊙ 6\times10^{10}\,\rm(\frac{10}{\mu})\,\rm{M_{\odot}}\,. We compile multi-band photometry tracing rest-frame UV to millimeter continuum emission to further constrain the properties of this dusty high redshift star-forming galaxy. Via SED modeling we find G12v2.43 is forming stars at a rate of 916 (10μ) M⊙ yr−1\rm(\frac{10}{\mu})\,\rm{M_{\odot}}\,\rm{yr^{-1}} and already has a stellar mass of 8×1010 (10μ) M⊙ 8\times 10^{10}\,\rm(\frac{10}{\mu})\,\rm{M_{\odot}}\,. We also constrain the age of the current starburst to be ⩽\leqslant 5 million years, making G12v2.43 a gas rich galaxy lying above the star-forming main sequence at z∼\sim3, undergoing a growth spurt and, could be on the main sequence within the derived gas depletion timescale of ∼\sim66 million years.Comment: 11 pages, 3 figures, accepted for publication in The Astrophysical Journa

    Spitzer 70/160 μm observations of high-redshift ULIRGs and HyLIRSs in the Boötes field

    Get PDF
    We present new 70 and 160 μm observations of a sample of extremely red (R – [24] ≳ 15 mag), mid-infrared bright, high-redshift (1.7 ≾ z ≾ 2.8) galaxies. All targets detected in the far-infrared exhibit rising spectral energy distributions (SEDs) consistent with dust emission from obscured active galactic nuclei (AGNs) and/or star-forming regions in luminous IR galaxies (LIRGs). We find that the SEDs of the high-redshift sources are more similar to canonical AGN-dominated local ultraluminous IR galaxies (ULIRGs) with significant warm dust components than to typical local star-forming ULIRGs. The inferred IR (8-1000 μm) bolometric luminosities are found to be Lbol ~ 4 × 10^12 L⊙ to ~3 × 10^13 L⊙ (ULIRGs/hyper-luminous IR galaxies (HyLIRGs)), representing the first robust constraints on Lbol for this class of object

    Wheels of Fire IV. Star Formation and the Neutral Interstellar Medium in the Ring Galaxy AM0644-741

    Full text link
    We combine data from the ATNF and the SEST to investigate the neutral ISM in AM0644-741, a large and robustly star-forming ring galaxy. The galaxy's ISM is concentrated in the 42-kpc diameter starburst ring, but appears dominated by atomic gas, with a global molecular fraction (f_mol) of only 7.9%. Apart from the starburst peak, the gas ring is stable against the growth of gravitational instabilities (Q_gas=2-7). Including stars lowers Q overall, but not enough to make Q<1 everywhere. The ring's global star formation efficiency (SFE) appears somewhat elevated, but varies around the ring by more than an order of magnitude, peaking where star formation is most intense. AM0644-741's star formation law is peculiar: HI follows a Schmidt law while H2 is uncorrelated with SFR/area. Photodissociation models yield low volume densities in the ring, particularly in the starburst quadrant (n~2 cm^-3), implying a warm neutral medium dominated ISM. At the same time, the ring's pressure and ambient far-ultraviolet radiation field lead to the expectation of a predominantly molecular ISM. We argue that the ring's peculiar star formation law, n, SFE, and f_mol result from the ISM's >100 Myr confinement time in the starburst ring, which enhances the destructive effects of embedded massive stars and supernovae. As a result, the ring's molecular ISM becomes dominated by small clouds where star formation is most intense, causing H2 to be underestimated by 12CO line fluxes: in effect X(CO) >> X(Gal) despite the ring's solar metallicity. The observed large HI component is primarily a low density photodissociation product, i.e., a tracer rather than a precursor of massive star formation. Such an "over-cooked" ISM may be a general characteristic of evolved starburst ring galaxies.Comment: 41 pages, 7 tables, 18 eps figure

    The Second-generation z (Redshift) and Early Universe Spectrometer. I. First-light Observation of a Highly Lensed Local-ulirg Analog at High-z

    Get PDF
    We recently commissioned our new spectrometer, the second-generation z(Redshift) and Early Universe Spectrometer (ZEUS-2) on the Atacama Pathfinder Experiment telescope. ZEUS-2 is a submillimeter grating spectrometer optimized for detecting the faint and broad lines from distant galaxies that are redshifted into the telluric windows from 200 to 850 μm. It uses a focal plane array of transition-edge sensed bolometers, the first use of these arrays for astrophysical spectroscopy. ZEUS-2 promises to be an important tool for studying galaxies in the years to come because of its synergy with Atacama Large Millimeter Array and its capabilities in the short submillimeter windows that are unique in the post-Herschel era. Here, we report on our first detection of the [C II] 158 μm line with ZEUS-2. We detect the line at z ~ 1.8 from H-ATLAS J091043.1–000322 with a line flux of (6.44 ± 0.42) × 10^(–18) W m^(–2). Combined with its far-IR luminosity and a new Herschel-PACS detection of the [O I] 63 μm line, we model the line emission as coming from a photo-dissociation region with far-ultraviolet radiation field, G ~ 2 × 10^4 G_0, gas density, n ~ 1 × 10^3 cm^(–3) and size between ~0.4 and 1 kpc. On the basis of this model, we conclude that H-ATLAS J091043.1–000322 is a high-redshift analog of a local ultra-luminous IR galaxy; i.e., it is likely the site of a compact starburst caused by a major merger. Further identification of these merging systems is important for constraining galaxy formation and evolution models

    The Arecibo Legacy Fast ALFA Survey: The alpha.40 HI Source Catalog, its Characteristics and their Impact on the Derivation of the HI Mass Function

    Get PDF
    We present a current catalog of 21 cm HI line sources extracted from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey over ~2800 square degrees of sky: the alpha.40 catalog. Covering 40% of the final survey area, the alpha.40 catalog contains 15855 sources in the regions 07h30m < R.A. < 16h30m, +04 deg < Dec. < +16 deg and +24 deg < Dec. < +28 deg and 22h < R.A. < 03h, +14 deg < Dec. < +16 deg and +24 deg < Dec. < +32 deg. Of those, 15041 are certainly extragalactic, yielding a source density of 5.3 galaxies per square degree, a factor of 29 improvement over the catalog extracted from the HI Parkes All Sky Survey. In addition to the source centroid positions, HI line flux densities, recessional velocities and line widths, the catalog includes the coordinates of the most probable optical counterpart of each HI line detection, and a separate compilation provides a crossmatch to identifications given in the photometric and spectroscopic catalogs associated with the Sloan Digital Sky Survey Data Release 7. Fewer than 2% of the extragalactic HI line sources cannot be identified with a feasible optical counterpart; some of those may be rare OH megamasers at 0.16 < z < 0.25. A detailed analysis is presented of the completeness, width dependent sensitivity function and bias inherent in the current alpha.40 catalog. The impact of survey selection, distance errors, current volume coverage and local large scale structure on the derivation of the HI mass function is assessed. While alpha.40 does not yet provide a completely representative sampling of cosmological volume, derivations of the HI mass function using future data releases from ALFALFA will further improve both statistical and systematic uncertainties.Comment: 62 pages, 28 figures. See http://egg.astro.cornell.edu/alfalfa/data for ASCII and CSV datafiles corresponding to Tables 1, 2 and 3. A higher resolution PDF version can be found at http://egg.astro.cornell.edu/alfalfa/pubs.php. To appear in Nov 2011 Astron.
    corecore