58 research outputs found

    Assessing models for genetic prediction of complex traits:a comparison of visualization and quantitative methods

    Get PDF
    BACKGROUND: In silico models have recently been created in order to predict which genetic variants are more likely to contribute to the risk of a complex trait given their functional characteristics. However, there has been no comprehensive review as to which type of predictive accuracy measures and data visualization techniques are most useful for assessing these models. METHODS: We assessed the performance of the models for predicting risk using various methodologies, some of which include: receiver operating characteristic (ROC) curves, histograms of classification probability, and the novel use of the quantile-quantile plot. These measures have variable interpretability depending on factors such as whether the dataset is balanced in terms of numbers of genetic variants classified as risk variants versus those that are not. RESULTS: We conclude that the area under the curve (AUC) is a suitable starting place, and for models with similar AUCs, violin plots are particularly useful for examining the distribution of the risk scores

    A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization

    Get PDF
    The increasing quantity and quality of functional genomic information motivate the assessment and integration of these data with association data, including data originating from genome-wide association studies (GWAS). We used previously described GWAS signals ("hits") to train a regularized logistic model in order to predict SNP causality on the basis of a large multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits. We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional characteristics and supply these online alongside resources to integrate these data with association data

    Regional genetic correlations highlight relationships between neurodegenerative disease loci and the immune system

    Get PDF
    Neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are devastating complex diseases resulting in physical and psychological burdens on patients and their families. There have been important efforts to understand their genetic basis leading to the identification of disease risk-associated loci involved in several molecular mechanisms, including immune-related pathways. Regional, in contrast to genome-wide, genetic correlations between pairs of immune and neurodegenerative traits have not been comprehensively explored, but could uncover additional immune-mediated risk-associated loci. Here, we systematically assess the role of the immune system in five neurodegenerative diseases by estimating regional genetic correlations between these diseases and immune-cell-derived single-cell expression quantitative trait loci (sc-eQTLs). We also investigate correlations between diseases and protein levels. We observe significant (FDR < 0.01) correlations between sc-eQTLs and neurodegenerative diseases across 151 unique genes, spanning both the innate and adaptive immune systems, across most diseases tested. With Parkinson’s, for instance, RAB7L1 in CD4+ naïve T cells is positively correlated and KANSL1-AS1 is negatively correlated across all adaptive immune cell types. Follow-up colocalization highlight candidate causal risk genes. The outcomes of this study will improve our understanding of the immune component of neurodegeneration, which can warrant repurposing of existing immunotherapies to slow disease progression

    Relative impact of indels versus SNPs on complex disease

    Full text link
    It is unclear whether insertions and deletions (indels) are more likely to influence complex traits than abundant single‐nucleotide polymorphisms (SNPs). We sought to understand which category of variation is more likely to impact health. Using the SardiNIA study as an exemplar, we characterized 478,876 common indels and 8,246,244 common SNPs in up to 5,949 well‐phenotyped individuals from an isolated valley in Sardinia. We assessed association between 120 traits, resulting in 89 nonoverlapping‐associated loci.We evaluated whether indels were enriched among credible sets of potential causal variants. These credible sets included 1,319 SNPs and 88 indels. We did not find indels to be significantly enriched. Indels were the most likely causal variant in seven loci, including one locus associated with monocyte count where an indel with causality and mechanism previously demonstrated (rs200748895:TGCTG/T) had a 0.999 posterior probability. Overall, our results show a very modest and nonsignificant enrichment for common indels in associated loci.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/1/gepi22175_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/2/gepi22175-sup-0001-Gagliano-Supplementary.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147866/3/gepi22175.pd

    Local genetic correlations exist among neurodegenerative and neuropsychiatric diseases

    Get PDF
    Genetic correlation ([Formula: see text]) between traits can offer valuable insight into underlying shared biological mechanisms. Neurodegenerative diseases overlap neuropathologically and often manifest comorbid neuropsychiatric symptoms. However, global [Formula: see text] analyses show minimal [Formula: see text] among neurodegenerative and neuropsychiatric diseases. Importantly, local [Formula: see text] s can exist in the absence of global relationships. To investigate this possibility, we applied LAVA, a tool for local [Formula: see text] analysis, to genome-wide association studies of 3 neurodegenerative diseases (Alzheimer's disease, Lewy body dementia and Parkinson's disease) and 3 neuropsychiatric disorders (bipolar disorder, major depressive disorder and schizophrenia). We identified several local [Formula: see text] s missed in global analyses, including between (i) all 3 neurodegenerative diseases and schizophrenia and (ii) Alzheimer's and Parkinson's disease. For those local [Formula: see text] s identified in genomic regions containing disease-implicated genes, such as SNCA, CLU and APOE, incorporation of expression quantitative trait loci identified genes that may drive genetic overlaps between diseases. Collectively, we demonstrate that complex genetic relationships exist among neurodegenerative and neuropsychiatric diseases, highlighting putative pleiotropic genomic regions and genes. These findings imply sharing of pathogenic processes and the potential existence of common therapeutic targets

    Analysis of subcellular RNA fractions demonstrates significant genetic regulation of gene expression in human brain post-transcriptionally

    Get PDF
    Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    International Parkinson’s Disease Genomics Consortium (IPDGC), UK Brain Expression Consortium (UKBEC).Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/.Mina Ryten, David Zhang, and Karishma D’Sa were supported by the UK Medical Research Council (MRC) through the award of Tenure-track Clinician Scientist Fellowship to Mina Ryten (MR/N008324/1). Sebastian Guelfi was supported by Alzheimer’s Research UK through the award of a PhD Fellowship (ARUK-PhD2014-16). Regina Reynolds was supported through the award of a Leonard Wolfson Doctoral Training Fellowship in Neurodegeneration

    Human-lineage-specific genomic elements are associated with neurodegenerative disease and APOE transcript usage

    Get PDF
    Knowledge of genomic features specific to the human lineage may provide insights into brain-related diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have been subject to human-specific purifying selection and are enriched for brain-specific elements. We find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We demonstrate that per-SNP heritability of a range of brain-relevant phenotypes are enriched within CNCRs. We find that genes implicated in neurological diseases have high CNCR density, including APOE, highlighting an unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the intron-3-retaining transcript to be more abundant in Alzheimer?s disease with more severe tau and amyloid pathological burden. Thus, we demonstrate potential association of human-lineage-specific sequences in brain development and neurological disease.FUNDING: Acknowledgements The authors are grateful to the participants in the Religious Order Study, the Memory and Aging Project. Z.C. and R.H.R. were supported by grants from the Leonard Wolfson Foundation. M.R. was supported by the United Kingdom Medical Research Council (MRC) through the award of a Tenure Track Clinician Scientist Fellowship (MR/ N008324/1). J.H. was supported by the UK Dementia Research Institute which receives its funding from DRI Limited, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. J.H. has also been funded by the Medical Research Council (award MR/N026004/1), Wellcome Trust (award 202903/Z/16/Z), Dolby Family Fund and National Institute for Health Research University College London Hospitals Biomedical Research Centre. J.B. is supported through the Science and Technology Agency, Séneca Foundation, CARM, Spain (research project 00007/COVI/20)

    Allele-skewed DNA modification in the brain:relevance to a schizophrenia GWAS

    Get PDF
    Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%-7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs
    corecore