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Regulatory sites for splicing in human basal ganglia
are enriched for disease-relevant information
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Genome-wide association studies have generated an increasing number of common genetic

variants associated with neurological and psychiatric disease risk. An improved under-

standing of the genetic control of gene expression in human brain is vital considering this is

the likely modus operandum for many causal variants. However, human brain sampling

complexities limit the explanatory power of brain-related expression quantitative trait loci

(eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic

and transcriptomic data from putamen and substantia nigra from 117 human brains, inter-

rogating regulation at different RNA processing stages and uncovering novel transcripts. We

identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory

information of neuron-specific genes, that ASEs provide cell-specific regulatory information

with evidence for cellular specificity, and that incomplete annotation of the brain tran-

scriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of

regulatory data is accessible through our web server, http://braineacv2.inf.um.es/.
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The use of genome-wide genotyping in large patient and
control populations has resulted in the identification of
increasing numbers of common variants that impact on

the risk of a wide range of neurological and psychiatric condi-
tions, including Parkinson’s disease1–3, Alzheimer’s disease4–6,
and schizophrenia7,8. However, the majority of these risk loci are
still poorly characterised, and we do not yet fully understand the
underlying molecular and cellular processes through which they
act. As it is reasonable to assume that many causal variants
operate by regulating gene expression, several studies have
attempted to address this problem through the use of expression
quantitative trait loci (eQTL) and allele-specific expression (ASE)
analyses in a wide range of human tissues, with the aim of finding
eQTL and ASE signals that colocalise with disease risk signals9,10.

This approach has had success, but perhaps not as much as
might have been expected for all diseases. Although the identi-
fication of eQTLs in blood has provided insights into auto-
immune disorders11,12, the utility of brain-related eQTL and ASE
data sets, particularly with regard to neurodegenerative disorders,
has been harder to demonstrate. For example, monocyte eQTL
data sets appear to provide greater insights for Alzheimer’s dis-
ease13, probably because they reflect regulatory processes in
microglia. This would suggest that while relevant eQTL and ASE
signals are present in the brain, they are currently difficult to
detect given the constraints on eQTL and ASE analyses in
human brain.

At present, the most easily available sampling method for brain
tissue is post mortem, making repeat sampling impossible and
typically leading to smaller sample sizes, particularly for smaller
structures such as the substantia nigra. Furthermore, the brain is a
highly complex organ. Not only is it split into many regions with
known inter-regional differences in expression14, each region is
composed of an assemblage of different cell types, which com-
plicates the interpretation of transcriptomic data and limits sta-
tistical power. Finally, the brain transcriptome is unusual in
having a high degree of alternative splicing and a high degree of
non-coding RNA activity15, much of which has yet to be fully
characterised16.

We address the latter of these constraints by conducting total
RNA sequencing in two basal ganglia regions of clinical interest to
human neurodegenerative and neuropsychiatric disorders: the
substantia nigra and putamen. Using a comprehensive set of
analyses to interrogate different stages of RNA processing and
uncover novel unannotated transcripts, we seek to identify not
only disease-relevant regulatory loci but also the types of analyses
and regulatory positions yielding the most brain and disease-
specific information. We find that splicing eQTLs are enriched for
neuron-specific regulatory information; that ASE analyses, prob-
ably by more effectively controlling for cellular heterogeneity,
provide highly cell-specific regulatory information; and that
incomplete annotation of the brain transcriptome is limiting the
interpretation of risk loci for neuropsychiatric disease. We release
the rich resource of eQTL and ASE data generated in this study
through a searchable web server, http://braineacv2.inf.um.es/
(Supplementary Fig. 1).

Results
RNA quantification and eQTL discovery. We assayed DNA and
RNA from 180 brain samples originating from 117 individuals of
European descent, which were part of the UK Brain Expression
Consortium data set17 and which were classified as neurologically
healthy based on the absence of neurological disease during life
and neuropathological assessment (Supplementary Data 1). We
focused on putamen and substantia nigra samples owing to their
distinctive expression profiles and disease relevance18,19. Using

these paired data, we searched for eQTL associations between
~6.5 million genetic variants and ~411,000 RNA expression traits
in putamen and ~370,000 RNA expression traits in substantia
nigra, resulting in ~5.3 billion eQTL tests. We generated RNA
expression traits using both annotation-based (known tran-
scripts) and annotation-agnostic approaches, noting that both
types of traits distinguished between the brain regions (Fig. 1a,
Supplementary Fig. 2). Within annotated regions, RNA quanti-
fication was performed with RNA processing in mind (Fig. 1a) to
produce four separate measures of transcription, which formed
the bases of our eQTL analysis. This resulted in the generation of
four types of eQTLs (gi-eQTLs, e-eQTLs, ex-ex-eQTLs, and ge-
eQTLs), of which two were designed to capture the genetic reg-
ulation of splicing eQTLs (e-eQTLs and ex-ex-eQTLs). Finally,
we included annotation-independent approaches to quantify
transcription. We focused specifically on unannotated transcrip-
tion within intergenic regions (producing i-eQTLs, Methods).

Following stepwise conditional analyses under a false discovery
rate (FDR) of 5%, we identified 19,156 separate significant eQTL
signals (hereafter, eQTLs) genome-wide (Supplementary Data 2–6),
of which 359 were secondary eQTLs (i.e., eQTLs with independent
effects after conditioning on the primary eQTL in the region).
Although there was a substantial difference in the number of
eQTLs identified in putamen and substantia nigra, the difference in
sample size (N= 111 for putamen and N= 69 for substantia nigra)
most likely accounted for this. However, eQTL discovery was not
simply driven by the number of features tested. Notably, the rate of
eQTL discovery, defined as the percentage of all expression features
tested with at least one significant associated eQTL, was highest in
unannotated intronic and intergenic regions (Fig. 1b), suggesting
that such eQTLs could be biologically important.

eQTLs and i-eQTL target regions show high replication rates.
We found that 50.6 and 50.4% of the testable eQTLs identified in
putamen and substantia nigra, respectively, were also detected
using microarray data, generated by the UK Brain Expression
Consortium17 and based on a common set of RNA samples. We
also found that 39.3% of putamen and 50.6% of substantia nigra
eQTLs replicated in the GTEx (v7) data resource19, using their
111 putamen and 80 substantia nigra samples respectively. Fur-
thermore, we investigated eQTL replication across all brain
regions studied in GTEx (Supplementary Table 1). We demon-
strated a replication rate of 19 to 53.3% for putamen, with the
highest replication rates observed in cerebellum (53.3%) and
caudate (48.2%). In the case of substantia nigra samples, repli-
cation rates were more similar across all brain tissues
(50.6–62.0%), potentially reflecting the relatively low sample
numbers used in the eQTL analysis in both our study (N= 65)
and that performed by GTEx (N= 80). Furthermore, we inves-
tigated replication using eQTLs from the larger dorsolateral
prefrontal cortex data sets generated by the PsychENCODE and
CommonMind consortia20,21. We found that although the eQTL
data sets generated by PsychENCODE and CommonMind con-
sortia were based on the analysis of sample sets, which are ~13
and ~5 times greater in size than GTEx, the replication rates were
(64.2% and 54.2%, respectively, as compared with 52.7% when
using the basal ganglia GTEx tissues). In contrast, when we
checked our eQTL signals against those reported by Lappalainen
and colleagues10 using RNA-seq analysis of 373 lymphoblastoid
cell lines, we found that despite the larger sample size in this
study, only 22.0% of putamen and 24.2% of substantia nigra
eQTLs were replicated.

Given the paucity of existing eQTL analyses using annotation-
independent approaches, we focused on validating the expression
of unannotated intergenic regions that were the target of a

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14483-x

2 NATURE COMMUNICATIONS |         (2020) 11:1041 | https://doi.org/10.1038/s41467-020-14483-x | www.nature.com/naturecommunications

http://braineacv2.inf.um.es/
www.nature.com/naturecommunications


significant i-eQTL. Using data provided by GTEx and processed
for re-use by recount222, we found that 70.3% of all such i-eQTL
target regions (in putamen and substantia nigra combined) were
detected in at least one other human tissue within the GTEx data
set, with the highest validation rates observed among brain
regions (Supplementary Table 1). We also explored the possibility
that the transcribed regions detected in our analysis and regulated
by i-eQTLs may represent enhancer RNAs as another means of
understanding the biological relevance of our findings. Consider-
ing all transcribed regions targeted by an i-eQTL and accounting
for their genomic size, we found that there was a 3.0-fold increase

in overlap with enhancer regions as defined within the
GeneHancer database v4.423 among i-eQTL target regions
(17.9%) as compared with e-eQTL targets (5.9%), suggesting that
the transcribed regions targeted by i-eQTLs are highly enriched
for eRNAs.

We further characterised i-eQTL target regions based on their
relationship to known genes (Fig. 2a). Using reads spanning
known exons and novel regions, physical proximity and
correlation in expression, we categorised unannotated expressed
regions into those with strong, moderate, or weak evidence for
being part of a known gene (Fig. 2a, Online Methods). This
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Fig. 1 Similar eQTL yield for unannotated expression features compared with annotated features. a Overview of transcriptome quantification. RNA was
quantified using five pipelines, each targeting distinct stages of RNA processing, and each followed by eQTL generation. Within annotated regions of the
transcriptome, reads were mapped to expression features and thereafter RNA was quantified. These features included: all intronic and exonic regions of a
gene (producing gene-intronic gi-eQTLs and gene-exonic ge-eQTLs, respectively); individual exons (producing e-eQTLs); and exon–exon junctions
(producing ex-ex-eQTLs). As total RNA was used for library construction, reads mapping to introns were presumed to be owing to pre-mRNA within
samples (an assumption supported by previous analyses using a subset of these data69). Quantification of individual exons and exon–exon junctions
provided a means of identifying loci that impact on alternative splicing. In common with most eQTL analyses, we also calculated overall gene expression
using all reads mapping to exons of a given gene, resulting in an expression metric that is influenced by transcriptional rate, splicing and RNA degradation
rates. Finally, we included annotation-independent approaches to quantify transcription. We focused specifically on unannotated transcription within
intergenic regions (producing i-eQTLs, Online Methods). b eQTL yields for both tissues were calculated as the number of expression features within a
category with at least one significantly associated eQTL divided by the total number of tested features within the same category. Source data are provided
as a Source Data file.
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approach allowed us to characterise 68.1% of all unannotated
expression regions (Fig. 2b). The validation rate for expression in
the GTEx data resource was 98.5% for unannotated expressed
regions with strong evidence for being part of a known gene,
93.8% for those with moderate evidence, and still high at 60.4%
for regions with weak evidence for being part of a known gene
(Fig. 2c). We also selected eight unannotated expressed regions
for experimental validation (Supplementary Table 2). Regardless
of their putative relationship to existing genes, all eight regions
validated using Sanger sequencing (Fig. 2d). In the case of
unannotated expressed regions with moderate evidence for
association, this analysis also enabled us to clarify the exon
boundaries. For example, sequencing confirmed the existence of a
novel exon of FIGNL1 (DER18381, Fig. 2d). Thus, using a
combination of public data resources and experimental work, we
demonstrated the validity of annotation-independent approaches
in transcriptomic analysis.

i-eQTLs and non-standard eQTLs are largely novel signals. As
51.2% of our characterised i-eQTL target regions have strong or
moderate evidence linking them to a known gene, we further
classified i-eQTLs into those with evidence for being new reg-
ulatory variants versus those appearing to act in a consistent
manner across all exons (thus recapitulating gene-level signals).
Using a modified test of heterogeneity (Methods) we separately
analysed i-eQTLs with strong, moderate, and weak evidence for
being linked to a known gene (Fig. 3). This analysis demonstrated
that some i-eQTLs were indeed re-discovered versions of existing
eQTL signals (Fig. 3a). However, many i-eQTLs appear to be
independent regulatory sites. For example, SNP rs4696709 reg-
ulates DER10633 expression, a probable novel exon of ABLIM2
(based on the presence of junction reads), but there is no sig-
nificant co-regulation of other exons of ABLIM2 (Fig. 3b). Even
among those i-eQTLs with strong evidence linking them to a
known gene, the percentage of i-eQTLs sharing signals with
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Fig. 2 i-eQTL target regions show high replication in independent data sets and validate experimentally. a Characterisation of i-eQTL target regions
(unannotated expressed regions that were the target of a significant i-eQTL) was based on several features reflecting their relationship to known genes.
These features were used to classify these regions into those with strong, moderate, and weak evidence for being part of a known gene. Regions
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regions and their reference genes. c The expression of unannotated expressed regions was validated in GTEx data, using brain region-specific and global
brain expression data. Validation rates in putamen and substantia nigra GTEx expression data were combined and displayed separately from validation
rates in RNA-seq data from all GTEx brain regions. d Sequencing results for i-eQTL target regions with strong, moderate, and weak evidence of being part
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Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14483-x

4 NATURE COMMUNICATIONS |         (2020) 11:1041 | https://doi.org/10.1038/s41467-020-14483-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


known annotation expression features was only 44% (Fig. 3c). We
extended this analysis to determine whether i-eQTLs with strong
or moderate evidence linking them to a known gene could
nonetheless be found in the larger eQTL data sets provided by
CommonMind, PsychENCODE, and BrainSeq20,21,24. In fact, the
majority of i-eQTLs were not identified (CommonMind, 73.0%;
PsychENCODE, 82.1%, and BrainSeq, 70.0%) again suggesting

that the regulatory information captured by these eQTLs is
indeed novel. Thus, across all types of characterised i-eQTLs, we
found evidence for the majority representing novel regulatory
variants, acting in a transcript-specific manner.

We also asked whether our alternative annotation-based eQTL
classes (gi-eQTLs, e-eQTLs, and ex-ex-eQTLs) provided novel
regulatory information compared with the standard gene-level
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eQTL analysis (ge-eQTLs). Again we used a modified test of beta-
heterogeneity to determine eQTL signal sharing among these
classes. Although 66.8% of gi-eQTLs were detectable with
standard ge-eQTLs, this figure was only 6.9% for splicing eQTLs
(Fig. 3d, suggesting that our additional eQTL classes provided
distinct regulatory information driven by splicing effects.

Splicing eQTLs are enriched for neuronal information. We
asked whether our different eQTL classes varied in terms of the
cellular specificity of their target expression features. We used
weighted gene co-expression network analysis, in combination with
publicly available cell-specific annotation data, to assign eQTL
target expression features to one of five broad cell types: neuron,
oligodendrocyte, astrocyte, microglia, and endothelial cell (Fig. 4a,
Online Methods). This module membership approach allowed us to
provide putative cellular classifications for expression features even
if they were outside known annotations. We confidently assigned
up to 75% of all analysed genes to a specific cell type, and these were
then related to 41.5% of all eQTL target expression features. We
observed a significant enrichment of neuronal genes in all non-
standard eQTL classes in one or both tissues investigated (Fig. 4b,
Supplementary Table 2). These included i-eQTLs targeting unan-
notated expressed regions (FDR-corrected Fisher’s Exact p value=
1.20 × 10−2 in putamen, Fig. 4b). Furthermore, we found that the
targets of splicing eQTLs were significantly enriched for neuronal
genes (FDR-corrected Fisher’s Exact p values= 1.21 × 10−7 and
2.28 × 10−5 for e-eQTLs and ex-ex-eQTLs, respectively, in sub-
stantia nigra), oligodendrocyte genes (FDR-corrected Fisher’s Exact
p value= 1.7 × 10−3 and 4.1 × 10−2 for e-eQTLs and ex-ex-eQTLs,
respectively in substantia nigra) and astrocyte genes (FDR-corrected
Fisher’s Exact p value= 8.74 × 10−4 and 1.12 × 10−3 for e-eQTLs
and ex-ex-eQTLs respectively in substantia nigra, Fig. 4b). This
points to the importance of capturing splicing information in the
analysis of human brain samples.

i-eQTLs are enriched for disease-relevant information. We
investigated the overlap of unannotated transcribed regions and
eQTL sites with known GWAS association signals. We used the
US National Human Genome Research Institute/European
Bioinformatics Institute (NHGRI-EBI) GWAS catalogue, restric-
ted to genome-wide significant SNPs (P < 5 × 10−8) and stratify-
ing for SNP-phenotype associations of relevance to neurological/
behavioural disorders as defined within the STOPGAP data-
base25. First, we investigated the possibility that unannotated
transcribed regions could themselves harbour risk loci of rele-
vance to neurological diseases, by calculating the proportion of
transcribed intergenic regions containing a brain-relevant risk
locus and comparing this value to that for expressed exons. After

adjusting for the size of each annotation, we found that unan-
notated transcribed regions and exons had a similar level of
overlap with brain-relevant risk loci (3.5% for exons and 2.9% for
transcribed intergenic regions after adjustment for annotation
size). However, the enrichment of brain-relevant risk loci was
higher for novel transcribed regions as compared to exons (1.51-
fold for targets of e-eQTLs versus 2.70 fold for targets of i-eQTLs
after adjustment for annotation size). Furthermore, we found a
significant enrichment for GWAS variants that were associated
with neurological and behavioural disorders compared with all
other SNP-phenotype associations (Supplementary Fig. 3) among
our eQTLs. Although the enrichment of brain-relevant GWAS
associations was most evident in ex-ex-eQTLs and gi-eQTLs, we
also found a significant enrichment for i-eQTLs (FDR-corrected
Fisher’s Exact p value= 6.45 × 10−7). i-eQTLs provided useful
information for 36.7% of all the neurologically relevant risk loci
within this analysis (equating to 76 loci). Given that these find-
ings could potentially be driven by correlations between i-eQTLs
and more conventional eQTL signals, we repeated this analysis
only using i-eQTLs considered to be independent regulatory
signals (based on modified beta-heterogeneity testing described
above). We found that the enrichment of brain-relevant risk loci
among i-eQTLs increased in significance in this sub-group (FDR-
corrected Fisher’s Exact p value= 7.01 × 10−8). Thus, our analysis
suggests that i-eQTLs do contribute to the understanding of a
significant proportion of neurologically relevant risk loci.

We further explored signal enrichment in i-eQTLs in relation to
two neurological diseases related to basal ganglia dysfunction:
Parkinson’s disease and schizophrenia. Using GWAS summary
statistics for these diseases1,7, we performed colocalisation analyses
for disease-risk association signals against i-eQTL signals using the
coloc26 programme. We identified 23 i-eQTL signals that colocalised
with risk loci for schizophrenia or Parkinson’s disease (Supple-
mentary Data 8). Among the former, we identified a signal indexed
by the lead SNP rs35774874 (GWAS p value= 1.97 × 10−11) that
colocalised with an i-eQTL targeting a probable novel 3′-UTR of
SNX19 (posterior colocalisation probability= 0.75), a gene that has
already been highlighted in schizophrenia27,28. Similarly, we
identified a colocalisation of the Parkinson’s disease GWAS lead
SNP rs4566208 (GWAS p value= 2.28 × 10−7) with an i-eQTL
regulating a probable novel exon of ZSWIM7 (i-eQTL p value=
1.09 × 10−5; posterior colocalisation probability= 0.89, Supplemen-
tary Fig. 4). However, we also found seven co-localising i-eQTL
signals targeting unannotated expressed regions that were not
linked to a known gene. For example, we found that the
schizophrenia risk SNP rs12908161 (GWAS p value= 9.41 ×
10−10) had a posterior colocalisation probability of 1.00 with an
i-eQTL targeting the unannotated expressed region DER36302

Fig. 3 i-eQTL target regions have evidence for distinct regulation. a Local association plots (−log10 FDR-corrected p values for eQTL association),
illustrating sharing of the rs113317084 variant (red point) between the i-eQTL-targeted region, DER32583 (green track), and the ge-eQTL-targeted gene,
DNAJC15 (blue track). b Local association plot illustrating no sharing of the rs4696709 variant (red point) between the i-eQTL-targeted region, DER10633
(green track), and the ge-eQTL-targeted gene, ABLIM2 (blue track). The detection of reads spanning DER10633 and an annotated exon within ABLIM2
provides compelling evidence that this region represents a novel exon of the gene. c Heterogeneity (distinct vs. shared) of i-eQTL signals, cross-
categorised by the strength of evidence linking their target region to a known gene, suggests that most are distinct and likely represent novel regulatory
variants acting in a transcript-specific manner. Heterogeneity was determined using a modified beta-heterogeneity test, accounting for the dependency
structure arising from within-individual and within-gene correlations. i-eQTL beta-coefficients were compared with that of the known exon with most
evidence of association with the i-eQTL target region. All eQTL signals with an FDR-corrected p value for heterogeneity < 0.05 were considered distinct,
whereas those with an FDR-corrected p value > 0.05 were considered shared (similar beta-coefficients). d Heterogeneity (distinct vs. shared) of non-
standard eQTL classes (gi-eQTLs, e-eQTLs, ex-ex-eQTLs, and i-eQTLs) suggests that many of these classes are distinctly regulated. Heterogeneity was
determined using a modified beta-heterogeneity test comparing beta-coefficients from ge-eQTLs to those derived from non-standard eQTL analyses
applied to the same gene. This analysis was performed separately for gi-eQTLs (tagging pre-mRNA), e-eQTLs, and ex-ex-eQTLs (tagging splicing) and all i-
eQTLs (tagging unannotated expression). All eQTL signals with an FDR-corrected p value < 0.05 were considered distinct, whereas an FDR-corrected
p value > 0.05 was taken as evidence of eQTL sharing. Source data are provided as a Source Data file.
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(chr15:84833811-84833975, eQTL p value= 7.94 × 10−10 in puta-
men, Fig. 5a). This novel transcribed region appears to be
independent of neighbouring genes, and is expressed in human
brain, with the highest expression in the anterior cingulate and
frontal cortex, two brain regions relevant to schizophrenia (Fig. 5b).

ASE discovery and validation. We applied ASE analysis to a
subset of 84 brain samples (substantia nigra n= 35; putamen n=
49) for which we had access to whole-exome sequencing in
addition to SNP genotyping data (Methods, Supplementary
Data 1). ASE analysis quantifies the variation in expression
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used the WGCNA R package63. b eQTL classes were variably enriched for genes with cell-biased expression, highlighting the importance of capturing this
information. Enrichment of genes with cell-biased expression within eQTL targeted expression features was performed separately for each tissue and was
determined using a Fisher’s Exact test and a significance cutoff of P < 0.05 (dashed red line at −log10(P)= 1.30). Genes assigned to modules significantly
enriched for brain-related cell type markers and with a module membership of > 0.3 were allocated a cell type. Next, for each eQTL targeting a known genic
region or an unannotated expressed region with high or moderate evidence linking it to a known gene, if the target gene was allocated to a cell type then
the related eQTL received the same cell type label. For eQTLs targeting unannotated expressed regions with low evidence for association with a known
gene or which could not be classified, we assigned the target expression feature to a module (and by inference a cell type) based on its highest module
membership providing the module membership was at least 0.3. Finally, for each eQTL class and each cell type, namely neuron, microglia, astrocyte,
oligodendrocyte, and endothelial cell, we applied a Fisher’s Exact test to test for enrichment of that cell type label among the genes associated to the eQTL
class. Expression features targeted by different eQTL classes were variably enriched for genes with cell-biased expression, highlighting the importance of
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as a Source Data file.
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between two haplotypes of a diploid individual distinguished by
heterozygous genetic variation, and so can capture the effects of a
range of regulatory processes, namely genomic imprinting,
nonsense-mediated decay and cis-regulation (Fig. 6a). In total
252,742 valid heterozygous SNPs (hetSNPs) across 53 individuals
were analysed. Of these, 7.62% (19,266) were significant ASE
signals (hereafter, ASEs) at FDR < 5% in at least one sample,
covering 8654 genes. Of the 19,266 ASEs identified, 12,096 were

found in putamen and 11,871 in substantia nigra (Supplementary
Data 9). Consistent with previous studies, we found that ASEs can
operate as markers of imprinting or parent-of-origin effects: ASE
signals that are not unidirectional across individuals are expected
to be enriched for imprinted genes (Fig. 6a). Consistent with
expectation, of all genes containing an ASE, 170 were identified
on the X chromosome (equating to 1.96%). Furthermore, we
observed that all inconsistent ASE signals (those that were not
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unidirectional within ≥ 10 individuals) were located within genes
known to be imprinted (as reported in www.geneimprint.com or
within the literature27–30) compared with 1–5% of consistent
signals (Fig. 6b).

We also found evidence for the generation of ASE signals
through nonsense-mediated decay. We identified 61 protein-
truncating variants (defined as stop gain, donor splice site, and
donor acceptor mutations) among our ASEs. Consistent with
expectation, the majority of these variants were predicted to cause
nonsense-mediated decay (52.5% using SNPeff31) and appeared
to result in mono-allelic expression, with >95% of all reads at the
ASE site originating from a single allele. These extreme ASEs are
expected to generate an effective reduction in gene dosage, and
therefore to cause a significant reduction in the total expression of
the affected genes. An example of this pattern is seen in the
LMBRD2 gene (Fig. 6c).

Finally, to check the overall reliability of our findings, we
looked for validation of our ASEs in an independent data set of
462 lymphoblastoid cell lines reported by Lappalainen and
colleagues10. We found that 67% of testable ASE signals could be
detected at an FDR < 5%, demonstrating the reliability of our ASE
sites while also suggesting the presence of brain-specific ASEs.

ASEs tag both gene level and splicing eQTLs. Cis-regulatory
variants are known to be one important generator of ASEs32. We
therefore investigated the overlap of eQTLs with ASEs in our
data, and compared it with the overlap observed with randomly
selected non-ASE heterozygous SNPs. After controlling for read
depth, we identified a highly significant enrichment of eQTLs
among our ASEs (p value= 2.65 × 10−195 in putamen and 9.99 ×
10−111 in substantia nigra, using a randomisation approach—see
Online Methods). This enrichment remained significant when we
restricted our analysis to eQTLs with effects on splicing (e-eQTLs
and ex-ex-eQTLs, p value= 1.17 × 10−178 in putamen and 1.29 ×
10−89 in substantia nigra, using a randomisation approach).
However, as expected, it was absent when we considered ASEs
located within imprinted genes, where the parental origin of the
SNP rather than the impact of cis-regulatory sites is expected to
drive allele-specific expression (p value= 0.923 in putamen and
0.856 in substantia nigra, using a randomisation approach).

To investigate the extent to which ASE sites tagged gene-level
or transcript-specific cis-regulatory effects, we focussed on
common ASE sites (seen in ≥10 individuals) that were
unidirectional in nature (same direction of effect across all
individuals). For each valid ASE site, we measured exon
expression across all three genotypes. Of all testable ASEs, we
found that 43.2% were also likely to be eQTLs. To ask whether the
underlying cis-regulatory effects operated in an exon-specific or
gene-level manner, we repeated the analysis using gene-level
expression across the genotypes. Of the ASEs that were also likely
eQTLs, 51.8% appeared to operate in an exon-specific manner,
implying that they tagged splicing eQTLs. rs7724759, a splice site
variant present in the CAST gene (Supplementary Fig. 6), and
rs1050078, a variant in SNX19 (Supplementary Fig. 6), are
examples of ASEs likely to be driven by exon-level and gene-level
regulation respectively.

Although this approach allowed us to identify ASE sites tagging
splicing eQTLs, it was limited to a small subset of common ASE
sites and represented only 0.8% of all ASEs. To address this issue,
we used the machine learning programme SPIDEX to predict the
effect of all ASEs on splicing33. Given a genetic variant, SPIDEX
provides the delta percent inclusion ratio (ΔΨ) for the exon in
which the variant is located (reported as the maximum ΔΨ across
tissues). We compared predicted ΔΨ values at ASE sites versus
non-ASE sites and found significantly higher values among ASEs

(Fisher’s Exact test p value= 4.50 × 10−5 and p value= 2.07 ×
10−19 using a randomisation approach). This strongly suggests
that ASEs are enriched for variants with effects on splicing.

ASEs show biologically and disease-relevant enrichments. We
assessed the cellular specificity of the regulatory information
ASEs provide. Given that ASE analysis is performed within an
individual and so is not subject to the confounding effects of
cellular heterogeneity across individuals, we expected that ASEs
would be a powerful means of obtaining cell-specific regulatory
information. Using a similar approach to that applied to eQTLs to
assign genes containing ASEs to brain-relevant cell types (neu-
rons, oligodendrocytes, astrocytes, microglia, and endothelial
cells), we found that ASE-containing genes were highly enriched
for neuronally expressed genes (Fisher’s Exact test FDR-corrected
p values of 9.97 × 10−235 in putamen and 3.05 × 10−97 in sub-
stantia nigra). We also found significant enrichments (FDR
p value < 5%) for oligodendrocyte, astrocyte, microglia, and
endothelial gene sets. Although we observed a similar pattern of
cell type-specific enrichments among eQTLs, the strength of
evidence for cellular specificity of ASEs was striking, suggesting
that incomplete covariate correction may be hampering the
power of eQTL analyses (Fig. 7a, Supplementary Data 7).

Finally, we used GWAS summary data sets for Parkinson’s
disease1 and schizophrenia7 to investigate the disease relevance of
ASEs. As GWAS loci often lie close to genic regions and so are
likely to overlap by chance with ASE signals, we used a
randomisation approach34 to investigate the enrichment of
GWAS loci within our ASEs (Methods). We compared overlaps
between risk loci and ASEs to overlaps between risk loci and
randomly selected non-ASE sites, and found a highly significant
enrichment of GWAS risk loci for both schizophrenia (p value=
7.49 × 10−35, using a randomisation approach, for ASEs derived
from both tissues) and Parkinson’s disease (p value= 4.19 × 10−7,
using a randomisation approach, for ASEs derived from both
tissues). We validated these findings using stratified LD score
regression35 by treating our ASE sites as a form of binary
annotation, and interestingly found that the enrichment of
Parkinson’s disease heritability appeared to be more specific to
ASEs identified in substantia nigra using this approach (Fig. 7b,
Supplementary Data 10). There was no enrichment in Parkin-
son’s disease or schizophrenia heritability among eQTLs using the
same method. Thus, although we recognise that eQTLs can be
powerful when linked to even more specific cell types for this type
of analysis20,36, we demonstrate the additional power of ASE
analysis to generate disease-relevant information, despite the
small number of samples we had at our disposal.

Discussion
The human brain is an especially challenging organ in which to
conduct eQTL and ASE studies. In addition to the difficulties of
sample collection, the brain is a highly complex organ, with site-
specific pathologies that motivate the use of equivalently specific
analyses. The brain is also known to express many transcripts not
seen in other parts of the body, and it is suspected that much of
its transcriptome remains uncharacterised16,37.

We tackled these issues by collecting RNA-seq data from
human substantia nigra and putamen, and applied a bank of five
transcriptome quantification methods, including annotation-
agnostic approaches as well as approaches to interrogate differ-
ent stages of RNA processing. We found that there is significant
variation among eQTL classes in their neuron- and brain-specific
information content, as measured by the cell type-specific
enrichment of eQTL targets. The most neuronally enriched and
brain-specific results were found in eQTL classes that most
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closely tag the regulation of splicing (e-eQTLs and ex-ex-eQTLs)
rather than gene-level expression. This finding is consistent with
recent studies that suggest that splicing eQTLs can provide sig-
nificant insights into complex diseases in general38, and brain-
related disorders in particular (e.g., schizophrenia20,36). Thus, in
addition to providing a rich eQTL resource, our study suggests
that the utility of existing and future eQTL analyses in human
brain may critically depend on the ability of the RNA sequencing
technology, and of the analytic methods applied, to capture
transcript-specific information.

We also asked whether the incomplete annotation of the
human brain transcriptome might be limiting eQTL discovery as
well as reducing the tissue-specific nature of the regulatory
information discovered. We focused on transcription within
intergenic regions, as transcriptional activity in these regions
cannot be explained by the presence of pre-mRNA but instead
could be generated through the expression of long intergenic
non-coding RNAs and enhancer RNAs, which are reported to be
expressed in a highly tissue-specific manner15,39. We show that
these expressed intergenic regions are reliably detected, and that
~16.1% of these expressed regions are highly likely to represent
novel exons of known genes (as demonstrated through the exis-
tence of junction spanning reads). They are also enriched for

overlap with enhancer regions, suggesting that many could also
represent eRNAs (3.03-fold enrichment over expressed exons).
Finally, we show that intergenic eQTLs (i-eQTLs) are enriched
for neuronally relevant information, and most importantly that
they can provide unique disease insights that would be missed
using standard analyses, as illustrated by the colocalisation of i-
eQTL signals with schizophrenia risk loci.

Nevertheless, the identification of splicing eQTLs from
homogenates of macro-dissected human brain, particularly from
brain regions that are hard to obtain in large numbers, is likely to
remain challenging even after accounting for the on-going
development of tools to optimise transcriptome quantification.
This motivates the use of ASE analysis, a form of within-
individual comparison that compares variation in expression
between two haplotypes of a diploid individual. This within-
individual comparison means that ASE analysis is unaffected by
between-individual confounders, such as the variability in cell
type-specific density among individuals. We applied ASE analysis
to 49 putamen and 35 substantia nigra samples, for which both
whole-exome sequencing and genotyping data were available.
Consistent with our expectation, we found that ASEs were sig-
nificantly enriched for variants identified as splicing eQTLs
within our own analysis or predicted to affect splicing according
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to SPIDEX. Furthermore, we found that the ASEs we identified
tagged regulatory information that was highly enriched for neu-
rons and brain-relevant cell types, even after accounting for the
general enrichment in brain-specific information contained
within the RNA-seq data. Finally, and most importantly, we used
two separate approaches to demonstrate the relevance of ASEs to
both Parkinson’s disease and schizophrenia, with evidence for
enriched heritability among ASEs. Given the small numbers of
samples used in our ASE analyses, this finding is particularly
striking. Thus, we provide evidence to suggest that ASE analysis
may be a particularly effective and efficient means of obtaining
regulatory information relevant to splicing, cell type and disease.

In summary, by using a range of methods to quantify and
analyse brain transcriptomic data, we demonstrate the impor-
tance of capturing information on the regulation of known and
novel splicing for the understanding of complex brain disorders,
and show that ASE analyses performed even on small sample sets
can provide additional insights.

Methods
Generation and processing of RNA sequencing data. Human brain samples
originating from 117 individuals of European descent were obtained from the
Medical Research Council (MRC) Sudden Death Brain and Tissue Bank and the
Sun Health Research Institute. All samples were authorised for ethically approved
scientific investigation (Research Ethics Committee number 10/H0716/3, National
Hospital for Neurology and Neurosurgery and Institute of Neurology Research
Ethics Committee) and had fully informed consent for retrieval. These samples
constituted a subset of the United Kingdom Brain Expression Consortium
(UKBEC) data set. RNA was isolated by using the miRNeasy 96 sample kit
(Qiagen, UK) and the RNA integrity number was assessed for each sample using
the Agilent 2100 Bioanalyzer (Agilent Technologies UK Ltd, UK) in combination
with the RNA 6000 Nano-LabChip kit (Supplementary Table 1).

cDNA libraries were prepared by the UK Brain Expression Consortium in
conjunction with AROS Applied Biotechnology A/S (Aarhus, Denmark). Using
100 ng of total RNA as input, amplified cDNA was generated with the NuGen
Ovation RNA-seq System V2 (NuGen Technologies, US) according to the
manufacturer’s protocol. This protocol deselects for rRNA by using oligo dT and
random hexamer primers for reverse transcription. After fragmentation of cDNA
(1 μg) using a Covaris S220 Ultrasonicator, we used the Illumina TruSeq DNA
library preparation kit (Illumina, US) followed by 10 cycles of PCR amplification of
library molecules containing adaptor molecules on both ends to generate the final
libraries. Sequencing of these DNA libraries was performed with Illumina’s TruSeq
V3 chemistry/HiSeq2000 to generate 100 base pair paired-end reads. Illumina’s
CASAVA Software was then used to generate fastq-files. Paired-end data were
mapped to the human genome (build GRCh37) using tophat240 (v2.0.9) with
default settings and a transcriptome-guided approach using the Ensembl reference
(v72) based on GENCODE version 18. Reads mapping to rRNA regions were
removed from the analysis.

Transcriptome quantification was performed using the transcriptome definition
from Ensembl reference (v72) using HTSeq-Counts41 (v0.5.4p4) for exonic regions,
BEDtools42 for intronic regions, DEXSeq43 (v1.10.6) for individual exons, Altrans44

(v1.1.02) for exon–exon junctions and the derfinder R package45 for unannotated
transcribed regions. Expressed regions were identified by derfinder using default
settings and filtering for expressed regions of >100 bp in length, annotated as
intergenic based on Ensembl v72 and UCSC through the R library TxDb.Hsapiens.
UCSC.hg19.knownGene version v3.1.2, and which uniquely mapped (defined as
>98% alignment precision). This approach was applied to each tissue separately
(putamen and substantia nigra). All forms of transcriptome quantification were
normalised using CQN46, with GC content calculated separately for each type of
quantification and used as an input for the CQN R-bioconductor package. The
resulting normalised expression data were then transformed into Reads Per
Kilobase of transcript per Million (RPKM) values and log2 converted. Exonic,
intronic, and transcribed intergenic regions with an RPKM of >0.1 in at least 80%
of samples were selected for downstream analyses.

DNA extraction and genotyping. DNA was extracted from sub-dissected samples
(100–200 mg) of human post mortem brain tissue using Qiagen’s DNeasy Blood &
Tissue Kit (Qiagen, UK). All samples were genotyped on the Illumina Infinium
Omni1-Quad BeadChip and on the Immunochip, a custom genotyping array
designed for the fine mapping of autoimmune disorders. Standard quality control
on the merged genotyping data was performed. Individuals of suspected non-
European descent and samples with percentage of non-missing genotypes of < 95%
were removed from the analysis. Reported gender status and non relatedness of
samples were confirmed. Monomorphic SNPs, variants with missing position
information, variants with a p value < 0.0001 for deviation from Hardy–Weinberg
equilibrium, variants with a genotype call rate < 95%, variants with less than two

heterozygotes present and variants with mismatching alleles from 1000 Genomes
Project were removed from the analysis. Imputation was performed using MaCH47

and minimac48 using the European panel of the 1000 Genomes Project (March
2012: Integrated Phase I haplotype release version 3, based on the 2010 November
data freeze and 14 March 2012 haplotypes). We used the resulting 5,878,211 SNPs
and 576,942 indels with good postimputation quality (R2 > 0.50) and minor allele
frequency (MAF) of at least 5%.

A subset of DNA samples were also analysed using whole-exome sequencing49

(N= 57, Supplementary Data 1, EGAS00001002113). Exome sequencing was
performed on each subject of the cohort according to the manufacturer’s capture
protocol; capture kits included Illumina and Nimblegen. Paired-end sequence reads
were aligned with BWA against the reference human genome (UCSC hg19)50.
Duplicate read removal, format conversion, and indexing was performed with
Picard (http://picard.sourceforge.net/). The Genome Analysis Toolkit was used to
recalibrate base quality scores, perform local realignments around indels, and to
call and filter the variants51,52. SnpEff was used to annotate gene and effect
information for the variants31. Subject QC was performed using typical methods to
check for call rate, heterozygosity outliers, gender, relatedness, and population
outliers. These QC checks were performed using Plink53 based on the Single
Nucleotide Variants (SNVs) that are in the intersection of the exome capture kits
used. VCFTools (http://vcftools.sourceforge.net/) was used to convert the SNV vcf
file to Plink formatted genotypes. Population outlier checks included subjects,
populations, and genotypes from the 1000 Genomes Project54, Phase1 Release
v2.20101123 for reference. Individual genotypes were removed with genotype
quality Phred-scores below 40. Omni-1M, Immunochip and exome sequencing
data were then merged with priority placed on the genotyping array data, only
overwriting calls from arrays when genotyping data were missing. MaCH47 was
used to determine phasing and the resulting files were converted into a variant call
format (VCF) file using R scripts. An average of 286,824 SNPs with heterozygous
genotypes were obtained per individual.

eQTL discovery and replication. Prior to performing eQTL analyses, the Prob-
abilistic Estimation of Expression Residuals55 (PEER) method was used to identify
unknown factors affecting expression levels and so optimise eQTL discovery. PEER
was run using default parameters with brain regions, age, and gender accounted for
as known covariates to generate 13 unknown factors (captured through the PEER
axes), which were applied to RPKM normalised values to produce residuals. As
would be expected, many of the 13 unknown factors were highly correlated with
recognised covariates such as RIN, library batch, and intronic read rate (Supple-
mentary Fig. 5). We also identified nine factors that were highly correlated with the
specific brain region analysed. We found that expression of SLC6A3, which encodes
the dopamine transporter (expressed with very high specificity in dopaminergic
neurons of the ventral midbrain including the substantia nigra, see below), was
highly correlated with the 10th PEER axis (p value: 1.9 × 10−26).

Variants within ±1Mb of each normalised expression feature (i.e., gene, exon,
exon–exon junction, and unannotated intergenic region) were tested for cis-eQTL
discovery using the R package MatrixEQTL56. Gender, age, and the first three
genetic principal component vectors were included as covariates within the linear
model of marker genotype (imputed expected counts of minor allele) against PEER
corrected expression values. The Benjamini–Hochberg method was applied to
calculate the FDR adjusting for the tests performed for each transcriptomic feature.
Finally, we used a stepwise conditional analysis for each quantification type to
detect independent variant effects targeting the same expression feature.

Three major types of data were used to validate eQTL results: (i) eQTL data
reported by Ramasamy and colleagues17, which used an overlapping set of donor
samples but a hybridisation-based microarray method for exon-level transcriptome
quantification, (ii) eQTL data generated by the GTEx19, PsychENCODE and
CommonMind Consortia20,21, which were based on independent sample sets, but
assayed multiple brain regions and which used RNA sequencing to quantify the
transcriptome, and (iii) eQTL data relating to 373 lymphoblastoid cell lines
generated by the Geuvadis consortium10, which used RNA sequencing for
transcriptome quantification. Gene-level eQTLs (ge-eQTLs) identified within our
study were declared as replicated when the significant SNP-gene pair was declared
a hit with an FDR < 5% in both our data set and the comparison data set.

Characterisation of unannotated transcribed intergenic regions. We leveraged
information from split reads (reads aligning to a genomic location with a gap or
multiple gaps) and combined this with information on co-expression and physical
proximity to known genes to characterise novel transcribed regions. In the first
instance, the split read information for each sample was collected from the
Tophat240 junction output file, and overlaps between transcribed intergenic regions
targeted by eQTLs and split reads were assessed using the GenomicRanges57 R
package. If a transcribed region overlapped with a split read, then the same split
read was screened for overlap with known genes. Only transcribed intergenic
regions with split reads present in at least four separate samples were classed as
having high evidence for being part of a known gene. In the absence of relevant
split read data, the nearest gene (in genomic distance) from each transcribed
intergenic region was selected using the GenomicRanges57 R package and the r²
was calculated between the expression of the transcribed intergenic region and each
exon of the nearest gene. Transcribed regions that had a maximum r² > 0.2 and
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were <5Kb from the nearest gene were classed as having moderate evidence for
being part of a known gene. Transcribed intergenic regions were classed as having
low evidence for being part of a known gene when the r2 was <0.2 or they were
>5Kb from the nearest gene.

We also explored the possibility that unannotated transcribed regions could
represent enhancer RNAs (eRNAs). We used the GeneHancer database v4.423,
which draws information from a wide range of sources (including ENCODE, the
FANTOM5 atlas, the VISTA Enhance Browser, dbSUPER and EPDnew, and
UCNEbase) to define enhancer locations and then quantified the percentage
overlap between eQTL target regions and enhancer regions. We adjusted for
differences in the genomic size of eQTL target regions by calculating the percentage
overlap per Mb of transcribed target sequence.

Validation of unannotated transcribed intergenic regions. We validated the
transcription of intergenic regions targeted by i-eQTLs in silico using the data
available on tissue-specific transcription generated by the GTEx consortium (www.
gtexportal.org) and mapped through recount222. The genome coordinates of all
intergenic regions of interest were quantified from the transcription expression
profiles generated with derfinder and available in recount222. Counts were trans-
formed to RPKMs and validation of transcription was considered when the region
had an RPKM > 0.1 in at least 80% of samples in the tissue of interest.

We selected eight transcribed intergenic regions targeted by i-eQTLs for
validation by Sanger sequencing. All regions were detected through analysis of
putamen samples and we used a subset of RNA samples from the set of 111 used
for RNA sequencing (Supplementary Table 2). In each case, reverse transcription
was performed with 500 μg of total RNA using High Capacity cDNA RT Kit
(Applied Biosystems) and random primers as per manufacturer’s instructions. PCR
was performed using specific primers (Supplementary Table 2), all of which were
designed to span predicted exon–exon junctions, and FastStart PCR Master
(Roche). Amplification of the predicted band was confirmed by agarose gel
electrophoresis and following confirmation, enzymatic clean-up of PCR products
was performed using Exonuclease I (Thermo Scientific) and FastAP
Thermosensitive Alkaline Phosphatase (Thermo Scientific). Sequencing was
performed using the BigDye terminator kit (Applied Biosystems). All sequences
were viewed using CodonCode Aligner (V. 6.0.2).

Identification of redundant eQTLs by beta-hetereogeneity testing. A mixed
model approach was used to identify heterogeneity in eQTL signal strength (beta
coefficient or slope) within a gene. To test for beta-heterogeneity between ge-eQTL
and each other eQTL class (namely gi-eQTLs, e-eQTLs, ex-ex-eQTLs and relevant
i-eQTLs) targeting the same gene, two models were fitted: (1) a non-heterogeneous
(single slope) model with allele dosage as the main effect and two random effects,
one indexing individuals and one indexing genes or exons or exon junctions and
(2) a heterogeneous (multiple slope) model containing the same terms, but with the
addition of a fixed-effect allele dosage × exon-or-exon junction index interaction
term. The lme4 R package was used to fit both models. A p value for the likelihood
ratio test comparing the two models was generated with the R function anova() and
an FDR of <5% was applied to assess significance.

Identification of disease-relevant eQTLs. We used the STOPGAP database25

(accessed on 20th of March 2018) to access and sub-classify loci identified through
genome-wide association studies (GWAS). eQTL-GWAS overlap was checked
using all eQTLs passing an FDR < 5%. The percentage overlap and enrichment was
calculated based on the total number of eQTLs identified. In addition, summary
statistics were obtained from Parkinson’s disease (with the exclusion of data gen-
erated by 23andMe) and schizophrenia GWAS1,7. We applied coloc26 to colocalise
Parkinson’s disease and schizophrenia loci with our eQTL signals. For each locus
with a GWAS p value of <1 × 10−5 we examined all SNPs available in both data sets
within 1Mb of the GWAS SNP of interest, and ran coloc with default parameters
and priors. We called the signals colocalised when Coloc H3+H4 probabilities
were greater than 0.8 and the H3/H4 probability ratio was greater than 2.

ASE signal discovery and replication. The ASE discovery pipeline was motivated
by the method of Rozowsky and colleagues58 and involved the creation of parent
haploids using phased variant data to reduce the impact of mapping biases on ASE
identification. Each individual’s haploid genome was constructed using genotype
data in the relevant VCF file, as parental information was unavailable. Deviations
from the reference genome present in the VCF file were used to update the
reference and create an artificial genome (two haploid genomes originating from
each parent) using the Personal Genome Constructor tool vcf2diploid58 (version
0.2.4). The haploid genomes were arbitrarily referred to as parent1 and parent2.
Trimmed fastq reads were aligned to individual haploid parent genomes using
Tophat40 and Bowtie259 (version 2.0.6), following a transcriptome-guided
approach, setting parameters to acquire the best alignment and allowing up to two
mismatches. The alignments acquired for both haploid genomes, for each indivi-
dual, were merged using the Suspenders tool (version 0.2.3), selecting the single
best-quality alignment. IGVTools60,61, version 2.3.18, was used to count the reads
with one or the other hetSNP allele. Counts of both alleles, C1 and C2, with alleles

ordered alphabetically, were used to calculate the adjusted ratio (C1+ 0.5)/(C2+
0.5) to measure the ASE effect size. The use of +0.5 as an adjustment was moti-
vated by the predicted reduction in the Taylor-Maclaurin bias estimator. Statistical
tests for ASE were carried out via exact tests for departure from binomial expec-
tation under the null hypothesis of (C1= C2), using the binom.test() function in R.
Tests were only conducted at heterozygous SNP sites where the total number of
counts (C1+ C2) exceeded five reads (defining valid sites). For each sample, we
converted the p values into FDR using the Benjamini–Hochberg procedure. An
FDR threshold of 5% was used to assess ASE significance in the valid sites. ASE
signal validation was performed using ASE data generated from previously pub-
lished lymphoblastoid cell line data10. After filtering for SNPs analysed in both data
sets (n= 54,214) we declared as validated those ASEs discovered in our brain data
set that also had an FDR-corrected p value of <5% within the lymphoblastoid
data set.

Characterisation of ASE signals. Variant Effect Predictor (VEP)62, SNPeff31, and
SPIDEX33 were used to annotate all hetSNPs and to obtain a list of genes that had
at least one significant hetSNP. For a subset of ASEs, namely those annotated as
protein-truncating variants within VEP (defined as stop gain, donor splice site and
donor acceptor mutations) or common across individuals (defined as a ASEs
identified in ≥10 individuals), we also investigated the impact of genotype on gene
expression. The average expression of the exon or gene (following PEER correc-
tion) was calculated separately for individuals homozygous or heterozygous for the
variant of interest or if possible across all three genotypes. We then performed
t tests or ANOVA as appropriate to identify departures from the null hypothesis of
no association between expression and genotype.

Investigation of the disease relevance of ASEs using randomisation. We
investigated the enrichment of GWAS risk loci for Parkinson’s disease (with the
exclusion of data generated by 23andMe)1 and schizophrenia7 among ASEs versus
non-ASE sites by using a randomisation approach similar to that described by
Nicolae and colleagues34 to generate an empirical p value for the significance of
overlaps between risk SNPs and ASE sites, accounting for differences in read depth.

Let C be the set of SNPs that are in common between our set of hetSNPs (used
for our ASE analyses) and the set of variants available from the GWAS summary
statistics of the disease association study. Let Ase be the subset of SNPs in C
declared to be ASE hits in our study, and let NonAse be the subset of SNPs in C not
declared to be ASE hits. For the randomisation procedure, we repeated the
following two steps 105 times:

i. Randomly select SNPs with replacement from NonAse to create a SNP set
with the same size and read depth distribution as that of Ase. This was done
by placing the NonAse into bins based on their average read depth across
samples and randomly selecting SNPs from the same to match the average
read distribution of the Ase set.

ii. Calculate the enrichment of GWAS signals within this SNP set by recording
the GWAS p values for each SNP within the set and computing the mean of
the −log10 transformed values. Let ri be the mean value for the ith iteration.

The z score for Ase (zAse) was obtained using the mean and standard deviation
of the ri values, and was tested using the pnorm() function in R to obtain a p value
for the enrichment of GWAS risk SNPs among ASEs versus non-ASEs.

Using a similar approach, we also tested ASEs for evidence of enrichment of
eQTLs and SNPs with effects on exon inclusion as predicted by SPIDEX.

Assessment of brain cell type specificity for eQTLs and ASEs. We used the
WGCNA R package63 to construct separate gene co-expression networks for
substantia nigra and putamen in order to generate modules enriched for cell type-
specific gene expression profiles. As input for each network construction, we used
genes detected in >70% of samples and with an RPKM of >0.1. Following nor-
malisation using CQN46 and accounting for GC content, we used 13 PEER axes
(see above) in addition to gender, age, and genetic axes to perform covariate
correction. The number of PEER axes was optimised to maximise the clustering of
high quality cell markers64. We generated signed networks using a soft-
thresholding power of 7 for substantia nigra and 8 for putamen networks, which
approximated a scale-free topology. We obtained first-pass definitions of the
modules via the dynamic Tree Cutting algorithm in WGCNA, and we then refined
these modules by applying a k-means algorithm as described in our previous
publication65. Modules were annotated in terms of cell-specific enrichments using
the userListEnrichment R function implemented in the WGCNA R Package,
combined with additional enrichment analysis on other marker gene sets64,66–68.
Consistent with other studies, we robustly identified modules enriched for cell
type-specific gene expression profiles21,66–68. Genes assigned to modules sig-
nificantly enriched for brain-related cell type markers and with a module mem-
bership of >0.3 were allocated a cell type label of neuron, microglia, astrocyte,
oligodendrocyte, and endothelial.

Next, for each eQTL targeting a known genic region, if the target gene was
allocated to a cell type then the related eQTL received the same cell type label. In
the case of eQTLs targeting unannotated transcribed intergenic regions with high
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or moderate evidence for association to a known gene, the eQTL received a cell
type label based on that known gene’s network position. For eQTLs targeting
transcribed intergenic regions with low evidence for association with a known gene
or which could not be classified, we assigned the target expression feature to a
module (and by inference a cell type) based on its highest module membership
(defined as the correlation of expression with the first principal component
(“eigengene”) of each module), provided the module membership was at least 0.3.
Finally, for each eQTL class and each cell type we applied a Fisher’s Exact test to
test for enrichment of that cell type label among the genes associated to the eQTL
class, relative to the genes not associated with that eQTL class but with module
membership >0.3 to a relevant cell type module. We followed a similar approach
for ASEs and assessed ASE-containing genes for significant cell type enrichment.

Partitioned heritability analysis of ASE sites. GWAS summary statistics were
obtained for schizophrenia7 and Parkinson’s disease (with the exclusion of data
generated by 23andMe)1. Stratified LD score regression67, a method for parti-
tioning SNP heritability across functional genomic annotations, was used to test for
enrichment of schizophrenia and Parkinson’s disease heritability within ASE
annotations. Region-specific annotations were defined for putamen and substantia
nigra (ASEs with FDR < 0.05 within a brain region were assigned to that region). In
addition, an annotation (all) containing all ASEs irrespective of brain region with
FDR < 0.05 was defined. Annotations were added individually to the “baseline”
model of 53 annotations provided by Finucane et al., which comprises 24 different
genome-wide annotations reflecting genetic architecture, such as conserved regions
and histone marks. HapMap Project Phase 3 SNPs and 1000 Genome Project
European population SNPs were used for the regression and LD reference panel,
respectively. Only SNPs with MAF > 5% were used for heritability partitioning and
the HLA region was excluded. We report the regression coefficient p value, which
tests whether the ASE annotations contribute significantly to SNP heritability after
controlling for the effects of the “baseline” model.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We have made data available in a web server and via full and summary-statistic data
downloads. Using our web resource, http://braineacv2.inf.um.es/, users can access and
visualise all forms of transcriptome quantification, eQTLs as well as gene co-expression
networks (Supplementary Fig. 1). The RNA-seq, whole-exome sequencing and
genotyping data can be accessed through the European Genome-phenome Archive
numbers EGAS00001002113 and EGAS00001003065. The source data underlying
Figs. 1b, 2b–d, 3a–d, 4b, 5a, b, 6b, c, 7b, and 8a and Supplementary Figs. 2a–c and 3–6 are
provided as a Source Data file.
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