118 research outputs found

    The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq

    Get PDF
    Animals respond to chemical stress with an array of gene families and pathways termed "chemical defensome". In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress

    Isolation of a Wickerhamomyces anomalus yeast strain from the sandfly Phlebotomus perniciosus, displaying the killer phenotype

    No full text
    The yeast Wickerhamomyces anomalus has been studied for its wide biotechnological potential, mainly for applications in the food industry. Different strains of W. anomalus have been isolated from diverse habitats and recently from insects, including mosquitoes of medical importance. This paper reports the isolation and phylogenetic characterization of W. anomalus from laboratory-reared adults and larvae of Phlebotomus perniciosus (Diptera: Psychodidae), a main phlebotomine vector of human and canine leishmaniasis. Of 65 yeast strains isolated from P. perniciosus, 15 strains were identified as W. anomalus; one of these was tested for the killer phenotype and demonstrated inhibitory activity against four yeast sensitive strains, as reported for mosquito-isolated strains. The association between P. perniciosus and W. anomalus deserves further investigation in order to explore the possibility that this yeast may exert inhibitory/killing activity against Leishmania spp

    Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, acetic acid bacteria have been shown to be frequently associated with insects, but knowledge on their biological role in the arthropod host is limited. The discovery that acetic acid bacteria of the genus <it>Asaia</it> are a main component of the microbiota of <it>Anopheles stephensi</it> makes this mosquito a useful model for studies on this novel group of symbionts. Here we present experimental results that provide a first evidence for a beneficial role of <it>Asaia</it> in <it>An. stephensi</it>.</p> <p>Results</p> <p>Larvae of <it>An. stephensi</it> at different stages were treated with rifampicin, an antibiotic effective on wild-type <it>Asaia</it> spp., and the effects on the larval development were evaluated. Larvae treated with the antibiotic showed a delay in the development and an asynchrony in the appearance of later instars. In larvae treated with rifampicin, but supplemented with a rifampicin-resistant mutant strain of <it>Asaia</it>, larval development was comparable to that of control larvae not exposed to the antibiotic. Analysis of the bacterial diversity of the three mosquito populations confirmed that the level of <it>Asaia</it> was strongly decreased in the antibiotic-treated larvae, since the symbiont was not detectable by PCR-DGGE (denaturing gradient gel electrophoresis), while <it>Asaia</it> was consistently found in insects supplemented with rifampicin plus the antibiotic-resistant mutant in the diet, and in those not exposed to the antibiotic.</p> <p>Conclusions</p> <p>The results here reported indicate that <it>Asaia</it> symbionts play a beneficial role in the normal development of <it>An. stephensi</it> larvae.</p

    Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    Get PDF
    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABCgene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps

    Presence of wolbachia in three hymenopteran species : diprion pini (Hymenoptera: Diprionidae), neodiprion sertifer (Hymenoptera: Diprionidae), and dahlbominus fuscipennis (Hymenoptera: Eulophidae)

    Get PDF
    Sawflies are important pests of various plant species. Diprion pini (L.) and Neodiprion sertifer (Geoffroy) (Hymenoptera: Diprionidae) are two of the most important sawfly pests in Italy, and both species are parasitized by the hymenopteran parasitoid Dahlbominus fuscipennis (Zetterstedt). Bacterial endosymbionts are currently studied for their high potential in strategies of biocontrol in a number of insect species. In this study, we investigated the presence of symbiotic bacteria (Wolbachia and Cardinium) in the three species of hymenoptera mentioned earlier, both in wild and laboratory populations. Although all samples were negative for the presence of Cardinium, 100% prevalence for Wolbachia was detected, as all examined individuals resulted to be PCR positive. Furthermore, 16S rDNA and ftsZ gene sequencing indicated that all individuals from the three hymenopteran species are infected by a single Wolbachia strain. Additionally, we report the presence of gynandromorphic individuals in D. pini, both in wild and laboratory-reared populations. Heat treatments on D. pini colonies removed the Wolbachia symbionts, but they also prevented the development of adults

    Scalable software framework for real-time data processing in the railway environment

    Get PDF
    Background: Ticks are obligate haematophagous ectoparasites of vertebrates and frequently parasitize avian species that can carry them across continents during their long-distance migrations. Ticks may have detrimental effects on the health state of their avian hosts, which can be either directly caused by blood-draining or mediated by microbial pathogens transmitted during the blood meal. Indeed, ticks host complex microbial communities, including bacterial pathogens and symbionts. Midichloria bacteria (Rickettsiales) are widespread tick endosymbionts that can be transmitted to vertebrate hosts during the tick bite, inducing an antibody response. Their actual role as infectious/pathogenic agents is, however, unclear. Methods: We screened for Midichloria DNA African ticks and blood samples collected from trans-Saharan migratory songbirds at their arrival in Europe during spring migration. Results: Tick infestation rate was 5.7%, with most ticks belonging to the Hyalomma marginatum species complex. Over 90% of Hyalomma ticks harboured DNA of Midichloria bacteria belonging to the monophylum associated with ticks. Midichloria DNA was detected in 43% of blood samples of avian hosts. Tick-infested adult birds were significantly more likely to test positive to the presence of Midichloria DNA than non-infested adults and second-year individuals, suggesting a long-term persistence of these bacteria within avian hosts. Tick parasitism was associated with a significantly delayed timing of spring migration of avian hosts but had no significant effects on body condition, whereas blood Midichloria DNA presence negatively affected fat deposits of tick-infested avian hosts. Conclusions: Our results show that ticks effectively transfer Midichloria bacteria to avian hosts, supporting the hypothesis that they are infectious to vertebrates. Bird infection likely enhances the horizontal spread of these bacteria across haematophagous ectoparasite populations. Moreover, we showed that Midichloria and tick parasitism have detrimental non-independent effects on avian host health during migration, highlighting the complexity of interactions involving ticks, their vertebrate hosts, and tick-borne bacteria

    Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development

    Get PDF
    Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases

    Profiling of Amatoxins and Phallotoxins in the Genus Lepiota by Liquid Chromatography Combined with UV Absorbance and Mass Spectrometry

    Get PDF
    Species in the mushroom genus Lepiota can cause fatal mushroom poisonings due to their content of amatoxins such as α-amanitin. Previous studies of the toxin composition of poisonous Lepiota species relied on analytical methods of low sensitivity or resolution. Using liquid chromatography coupled to UV absorbance and mass spectrometry, we analyzed the spectrum of peptide toxins present in six Italian species of Lepiota, including multiple samples of three of them collected in different locations. Field taxonomic identifications were confirmed by sequencing of the internal transcribed spacer (ITS) regions. For comparison, we also analyzed specimens of Amanita phalloides from Italy and California, a specimen of A. virosa from Italy, and a laboratory-grown sample of Galerina marginata. α-Amanitin, β-amanitin, amanin, and amaninamide were detected in all samples of L. brunneoincarnata, and α-amanitin and γ-amanitin were detected in all samples of L. josserandii. Phallotoxins were not detected in either species. No amatoxins or phallotoxins were detected in L. clypeolaria, L. cristata, L. echinacea, or L. magnispora. The Italian and California isolates of A. phalloides had similar profiles of amatoxins and phallotoxins, although the California isolate contained more β-amanitin relative to α-amanitin. Amaninamide was detected only in A. virosa

    Lyme Borreliosis, Po River Valley, Italy

    Get PDF
    We aimed to determine the presence of Ixodes ricinus ticks in heavily populated areas of the Po River Valley after report of a Lyme disease case. Eighteen percent of ticks examined from 3 locations were positive for Lyme disease borreliae. Lyme disease was diagnosed for 3 workers at risk for tick bite

    Exposure to amitraz, fipronil and permethrin affects cell viability and ABC transporter gene expression in an Ixodes ricinus cell line

    Get PDF
    Background: Over-expression of ATP-binding cassette (ABC) transporter proteins has been implicated in resistance of ticks to acaricides. Tick cell lines are useful for investigating resistance mechanisms, as development of an in vitro model for the study of acaricide resistance would contribute to improving knowledge of the molecular basis behind drug processing and exclusion in ticks. In the present study, cultures of the Ixodes ricinus-derived cell line IRE/CTVM19 were treated with the acaricides amitraz, permethrin or fipronil to determine modulation of ABC transporter gene expression. Cells were treated with different drug concentrations (25, 50, 100, 150 \u3bcM) and incubated for ten days. Cell morphology, viability, metabolic activity and relative expression of ABC (B1, B6, B8 and B10) genes were determined at day 10 post-treatment. Results: Cell morphology determined by light microscopy was altered following treatment with all drugs, but only at high concentrations, while total cell numbers decreased with increasing drug dose. Cell viability determined by trypan blue exclusion was not significantly different from untreated controls (P > 0.1) following treatment with amitraz and permethrin, but high concentrations of fipronil caused decrease (up to 37%, P < 0.01) in viability. At all drug concentrations, fipronil and permethrin induced dose-dependent reduction in cell metabolic activity measured by MTT assay (P < 0.01). Quantitative RT-PCR showed that the drugs significantly affected expression of ABC genes. In particular, fipronil treatment downregulated ABCB1 (P < 0.001) and upregulated ABCB6, ABCB8 and ABCB10 (P < 0.01); amitraz treatment down regulated ABCB1 (significant difference between 25 and 150 \u3bcM, P < 0.001) and upregulated ABCB8 and ABCB10 at lower concentrations (25 and 50 \u3bcM, P < 0.05); and permethrin upregulated ABCB6, ABCB8 and ABCB10 only at 150 \u3bcM (P < 0.01). Conclusions: The adverse effects on cell viability and metabolic activity, and changes in expression of different ABC transporter genes, detected in IRE/CTVM19 cells following treatment with amitraz, permethrin and fipronil, support the proposed application of tick cell lines as in vitro models for the study of resistance to these acaricides in ticks
    • …
    corecore