3,550 research outputs found

    Developing and Diagnosing Climate Change Indicators of Regional Aerosol Optical Properties

    Get PDF
    Given the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (ngstrm exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over well-defined regions of North America, there are generally negative temporal trends in mean and extreme AOD, and SSA. These are consistent with lower aerosol burdens and transition towards a relatively absorbing aerosol, driven primarily by declining sulfur dioxide emissions. Conversely, more remote regions are characterized by increasing mean and extreme AOD that is attributed to increased local wildfire emissions and long-range (transcontinental) transport. Regional and national reductions in anthropogenic emissions of aerosol precursors are leading to declining spatial autocorrelation in the aerosol fields and increased importance of local anthropogenic emissions in dictating aerosol burdens. However, synoptic types associated with high aerosol burdens are intensifying (becoming more warm and humid), and thus changes in synoptic meteorology may be offsetting aerosol burden reductions associated with emissions legislation

    An integrated approach for trace detection of pollutants in water using polyelectrolyte functionalized magneto-plasmonic nanosorbents

    Get PDF
    Resistance of pathogenic micro-organisms to conventional antibiotics is an essential issue for public health. The presence of such pharmaceuticals in aquatic ecosystems has been of major concern for which remediation and ultra-sensitive monitoring methods have been proposed. A less explored strategy involves the application of multifunctional nanosorbents for the uptake and subsequent detection of vestigial contaminants. In this study, colloidal nanoparticles (NPs) of iron oxide and gold were encapsulated in multi-layers of a charged polyelectrolyte (PEI: polyethyleneimine), envisaging the effective capture of tetracycline (TC) and its subsequent detection by Surface Enhanced Raman Scattering (SERS). Adsorption studies were performed by varying operational parameters, such as the solution pH and contact time, in order to evaluate the performance of the nanosorbents for the uptake of TC from water. While the magnetic nanosorbents with an external PEI layer (Fe3O4@PEI and Fe3O4@PEI-Au@PEI particles) have shown better uptake efficiency for TC, these materials showed less SERS sensitivity than the Fe3O4@PEI- Au nanosorbents, whose SERS sensitivity for TC in water has reached the limit of detection of 10 nM. Thus, this study highlights the potential of such magneto-plasmonic nanosorbents as multi-functional platforms for targeting specific contaminants in water, by taking into consideration both functionalities investigated: the removal by adsorption and the SERS detection across the nanosorbents' surfaces.publishe

    Tree canopy enhances Collembola functional richness and diversity across typical habitats of the Gorongosa National Park (Mozambique)

    Get PDF
    ABSTRACT: The role of tree canopies in protecting soil functional diversity is essential for ecosystems threatened by the longer lasting periods of drought, which are predicted to increase in the southern afro-tropical region. Nonetheless, biodiversity inventories of soil mesofauna are scarce in afro-tropical ecosystems, even in emblematic and well-studied protected areas, such as the Gorongosa National Park (GNP). Understanding the interrelationships between tree canopies and soil fauna functional diversity can provide insightful information for future adaptive management to protect wildlife and ecosystem services in the GNP, in the context of climate change. Here we assessed collembolan functional type richness and functional diversity in the dry period and during the rainfall across major GNP habitat types: miombo forests, mixed forests, and open savanna/floodplains. Besides the significant positive influence of rainfall, habitat types also influenced functional type’ richness and diversity of collembolan life-forms. Environmental gradients across habitat types, namely the area of tree canopy cover and its indirect effect on soil local conditions (pH and nutrient availability), explained collembolan functional parameters. Calcium concentrations and soil alkalinity significantly enhanced collembolan functional type richness and functional diversity, respectively. Collembola survival across GNP habitats depended on the canopy buffering in the dry sampling period. These results highlight the key role of tree canopies in creating suitable microhabitat conditions supporting soil functional diversity and the sustainability of soil processes and ecosystem services in GNP.info:eu-repo/semantics/publishedVersio

    Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus

    Get PDF
    The antifungal activity of essential oils of fennel (Foeniculum vulgare Mill., Apiaceae), ginger (Zingiber officinale Roscoe, Zingiberaceae), mint (Mentha piperita L., Lamiaceae) and thyme (Thymus vulgaris L., Lamiaceae) was evaluated against mycotoxin producers Aspergillus flavus and A. parasiticus. High Resolution Gas Chromatography was applied to analyze chemical constituents of essential oils. The effect of different concentrations of essential oils was determined by solid medium diffusion assay. Mycelial growth and sporulation were determined for each essential oil at the concentrations established by solid medium diffusion assay. At the fifth, seventh and ninth days the mycelial diameter (Ø mm) and spore production were also determined. FUN-1 staining was performed to assess cell viability after broth macrodilution assay. Trans-anethole, zingiberene, menthol and thymol are the major component of essential oils of fennel, ginger, mint and thyme, respectively. The effective concentrations for fennel, ginger, mint and thyme were 50, 80, 50 and 50% (oil/DMSO; v/v), respectively. The four essential oils analysed in this study showed antifungal effect. Additionally, FUN-1 staining showed to be a suitable method to evaluate cell viability of potential mycotoxigenic fungi A. flavus and A. parasiticus after treatment with essential oils.The authors are grateful to the colleagues from Laboratory of EPAMIG and Microbiology DEB/UFLA and the Micoteca da Universidade do Minho, Center for Biological Engineering, UMINHO for their support to perform this work. A special aknowledgment is also due to the FAPEMIG and MUM-UMINHO for the financial support of bench work and to CAPES for granting the first author with a PhD scholarship

    Iodination of phenols in water using easy to handle amine-iodine complexes

    Full text link
    The reaction between iodo and N-methyl-piperazine or thiomorpholine in water, in the presence of KI, led to the formation of stable and easy to handle amine-iodine complexes, as the complex morpholine-iodo previously reported in the literature. However, the complex obtained using N,N-tetrametylethylenediamine proved less stable, while no complex was formed when piperidine was used as base. These results show that the presence of a second heteroatom in the structure of amines is of fundamental importance for the formation and stability of these complexes. In this work we describe, for the first time, the use of complexes morpholine-iodo, N-methyl-piperazine-iodo and thiomorpholine-iodo as iodinating reagents of several substituted phenols, leading to iodinated products in good to excellent yields
    corecore