70 research outputs found

    Suitability and uncertainty of two models for the simulation of ammonia dispersion from a pig farm located in an area with frequent calm conditions

    Get PDF
    We used two atmospheric dispersion models (ADMS and AERMOD) to simulate the short-range dispersion of ammonia emitted by two pig farms to assess their suitability in situations with frequent calm meteorological conditions. Simulations were carried out both using constant and temporally-varying emission rates to evaluate the effect on the model predictions. Monthly and annual mean concentrations predicted by the models at locations within one kilometre of the farms were compared with measured values. AERMOD predicted higher concentrations than ADMS (by a factor of 6–7, on average) and predicted the atmospheric concentrations more accurately for both the monthly and annual simulations. The differences between the concentrations predicted by the two models were mainly the result of different calm wind speed thresholds used by the models. The use of temporally-varying emission rates improved the performance of both models for the monthly and annual simulations with respect to the constant emission simulations. A Monte Carlo uncertainty analysis based on the inputs judged to be the most uncertain for the selected case study estimated a prediction uncertainty of ± a factor of two for both models with most of this due to uncertainty in emission rates

    Implications of a food system approach for policy agenda-setting design

    Get PDF
    A call to governments to enact a strategy for a sustainable food system is high on the global agenda. A sustainable food system presupposes a need to go beyond a view of the food system as linear and narrow, to comprehend the food system as dynamic and interlinked, which involves understanding social, economic and ecological outcomes and feedbacks of the system. As such, it should be accompanied by strategic, collaborative, transparent, inclusive, and reflexive agenda-setting process. The concepts of, directionality relating to an agreed vision for a future sustainable food system, and, reflexivity which describes the capacity for critical deliberation and responsiveness, are particularly important. Based on those concepts, this paper proposes an evaluative framework to assess tools and instruments applied during the agenda-setting stage. We apply the evaluative framework to recent food policy processes in Finland and Sweden, revealing that their agenda-setting design cannot be assessed as fully addressing both directionality and reflexivity, thus possibly falling short of the policy design needed for enable more transformative policy approaches

    Demand-Side Food Policies for Public and Planetary Health

    Get PDF
    Background: The current food system has major consequences for the environment and for human health. Alignment of the food policy areas of mitigating climate change and public health will ensure coherent and effective policy interventions for sustaining human health and the environment. Thispaperexploresliteratureondemand-sidepoliciesthataimtoreduceconsumptionof animal-basedfoods,increaseplant-basedfoods,andreduceoverconsumption. Methods:Wesearched for publications, published between January 2000 and December 2019, considering the above policy domains. Articles were distinguished for type of policy instrument, for topic via keywords and examples were given. Results: The majority of demand-side policies focus on preventing overweight and obesity, using all types of policy instruments including more forceful market-based policies. Hardly any examples of public policies explicitly aiming to lower animal-based foods consumption were found. Policies combining health and sustainability objectives are few and mainly of the information type. Discussion: Moving towards environmentally sustainable and healthy diets is challenging as the implemented demand-side policies focus largely on human health, and not yet on environmental outcomes, or on win-wins. Policies targeting foods from the health perspective can contribute to lower environmental impacts, by indicating suitable animal-based food replacers, and aiming at avoiding overconsumption of energy dense-nutrient poor foods. Preferred policies include a variety of instruments, including strong measures. Conclusions: Working solutions are available to ensure coherent and effective demand side food policies aligning public health and environmental aims. Implementation of aligned and effective policy packages is urgent and needed.© 2020 by the authorspublishedVersio

    Nitrous oxide emissions from European agriculture - An analysis of variability and drivers of emissions from field experiments

    Get PDF
    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup>, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (<i>p</i> < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N<sub>2</sub>O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation

    Leakage of nitrous oxide emissions within the Spanish agro-food system in 1961-2009

    Full text link
    Abstract In this paper we examine the trends of nitrous oxide (N2O) emissions of the Spanish agricultural sector related to national production and consumption in the 1961?2009 period.The comparison between production- and consumption-based emissions at the national level provides a complete overview of the actual impact resulting from the dietary choices of a given country and allows the evaluation of potential emission leakages. On average, 1.5 % of the new reactive nitrogen that enters Spain every year is emitted as N2O. Production- and consumption-based emissions have both significantly increased in the period studied and nowadays consumption-based emissions are 45 % higher than production-based emissions. A large proportion of the net N2O emissions associated with imported agricultural godos comes from countries that are not committers for the United Nations Framework Convention on Climate Change Kyoto Protocol Annex I. An increase in feed consumption is the main driver of the changes observed, leading to a arkable emission leakage in the Spanish agricultural sector. The complementary approach used here is essential to achieve an effective mitigation of Spanish greenhouse gas emissions

    Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case

    Get PDF
    Online supplementary data available from stacks.iop.org/ERL/9/125005/mmedia[EN] Synthetic nitrogen (N) fertilizer and field application of livestock manure are the major sources of ammonia (NH3) volatilization. This N loss may decrease crop productivity and subsequent deposition promotes environmental problems associated with soil acidification and eutrophication. Mitigation measures may have associated side effects such as decreased crop productivity (e.g. if N fertilizer application is reduced), or the release of other reactive N compounds (e.g. N2O emissions if manure is incorporated). Here, we present a novel methodology to provide an integrated assessment of the best strategies to abate NH3 from N applications to crops. Using scenario analyses, we assessed the potential of 11 mitigation measures to reduce NH3 volatilization while accounting for their side effects on crop productivity, N use efficiency (NUE) and N surplus (used as an indicator of potential N losses by denitrification/nitrification and NO3 − leaching/run-off). Spain, including its 48 provinces, was selected as a case study as it is the third major producer of agricultural goods in Europe, and also the European country with the highest increase in NH3 emissions from 1990 to 2011. Mitigation scenarios comprised of individual measures and combinations of strategies were evaluated at a country- and regional level. Compared to the reference situation of standard practices for the year 2008, implementation of the most effective region-specific mitigation strategy led to 63% NH3 mitigation at the country level. Implementation of a single strategy for all regions reduced NH3 by 57% at the highest. Strategies that involved combining mitigation measures produced the largest NH3 abatement in all cases, with an 80% reduction in some regions. Among the strategies analyzed, only suppression of urea application combined with manure incorporation and incorporation of N synthetic fertilizers other than urea showed a fully beneficial situation: yieldscaled NH3 emissions were reduced by 82%, N surplus was reduced by 9%, NUE was increased by 19% and yield was around 98% that of the reference situation. This study shows that the adoption of viable measures may provide an opportunity for countries like Spain to meet the international agreements on NH3 mitigation, while maintaining crop yields and increasing NUEThe authors are grateful to the Spanish Ministry of Science and Innovation and the Autonomous Community of Madrid for their economic support through the NEREA project (AGL2012-37815- C05-01, AGL2012-37815-C05-04) and GASPORC (AGL2011-30023-C03) projects. We wish to thank the FIRE (Federation Ile de France de Recherche en Environment, CNRS and UPMC) as well as the Agrisost Project (S2009/AGR-1630). Eduardo Aguilera gratefully acknowledges funding by the 895-2011-1020 project (Canadian Social Sciences and Humanities Research Council). This paper has been produced within the context of the REMEDIA network (http://redremedia.wordpress.com).Sanz-Cobeña, A.; Lassaletta, L.; Estellés, F.; Del Prado, A.; Guardia Guardia, G.; Abalos, D.; Aguilera, E.... (2014). Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case. Environmental Research Letters. 9(12):1-12. https://doi.org/10.1088/1748-9326/9/12/125005S11291
    corecore