1,190 research outputs found

    Review of livestock buildings modeled with CFD techniques

    Full text link
    [EN] The control of the indoor environmental factors (air velocity, temperature, humidity) allows improving the thermal comfort area in automated farms. A deep knowledge of these factors and how they are distributed in the farm allows reducing the effects of thermal stress. In this article, the authors review the use of computational fluid dynamics (CFD) models in the climate control of livestock farms and propose recommendations obtained from different farm models. The use of CFD tools and the validation with experimental results has been widely evaluated in the literature. Both real and reduced, scaled farms were evaluated by different authors, regarding the behaviour of airflow, the appropriateness of turbulence models and the use of measurement equipment. Natural and mechanical ventilation have different challenges in practice, and therefore both have been subject of study. Occupied and empty farms were used for validation, and different CFD analysis were used to determine the distribution of air velocity, temperature and humidity. By means of these analyses the environmental parameters have been evaluated as a function of changing farm design and management: the change of building dimensions, the roof geometry, the height of the air inlet openings, the opening angle of air inlets, and the presence of equipment and animals in different sections of the farm.Guerra Galdo, EH.; Estellés Barber, F.; Calvet Sanz, S.; López Jiménez, PA. (2017). Review of livestock buildings modeled with CFD techniques. International Journal of Energy and Environment (IJEE). 8(5):405-412. http://hdl.handle.net/10251/89691S4054128

    The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

    Get PDF
    Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-γ immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD

    Computational Fluid Dynamics analysis applied to engineering and design of poultry farms

    Full text link
    The shape of a poultry building and the distribution of its elements (roof, windows distribution, and window opening) influence the velocity and temperature distribution inside the building and therefore the thermal comfort of the broilers. Considering these components, Computational Fluid Dynamics (CFD) was used to analyze the environmental conditions of 3 poultry buildings: tunnel (T), semi-tunnel (ST) and improved semi-tunnel (IST). These three buildings had the same dimensions but differed in the relative position of fans and windows. This study modelled the effect of different configurations of roof (flat or gable roof) and window design (with or without flap plate) on the distribution of temperature, air velocity and Index of Temperature and Velocity (ITV) at animal level (0.20 m above the ground). Simulations were conducted for summer and winter conditions. In summer conditions, configuration IST with gable roof without flap plate had lowest air velocity 0.72±0.27 m/s and average temperature (22.9±0.9ºC) whereas tunnel configuration with gable roof and flap plate had lowest ITV (22.94±1.30ºC on average). In winter conditions, IST configuration with flat roof had lowest average air velocity (0.24 m/s), whereas the highest temperature corresponded to semi-tunnel with gable roof without flap plate of the slot opening (19.35±2.67ºC). Finally, the lowest ITV corresponded to tunnel without flap plate and gable roof configuration (19.14±3.57ºC). According to the CFD simulations, in three configurations the variables analyzed were within the comfort ranges reported for animals inside buildings.Guerra Galdo, EH.; Estellés Barber, F.; Calvet Sanz, S.; López Jiménez, PA. (2016). Computational Fluid Dynamics analysis applied to engineering and design of poultry farms. International Journal of Energy and Environment. 7(4):269-282. http://hdl.handle.net/10251/72993S2692827

    CFD model for ventilation assessment in poultry houses with different distribution of windows

    Full text link
    ©2015 International Energy & Environment FoundationThe design of structures for animal husbandry has energy and environmental implications. Particularly, the design of broiler houses should consider the comfort of animals in different situations, which is crucial for their proper development. Building geometry and distribution of fans and windows determine critically the ventilation flows and temperature distribution. The use of fluid analysis techniques can be of valuable help in the initial phases of the design of farms, because potential alternatives may be explored. In this study, Computational Fluid Dynamics (CFD) simulations were used to evaluate the ventilation and temperature distribution in three tunnel, mechanically ventilated broiler houses with identical geometry but different distribution of inlet windows and exhaust fans. The three distributions were: (1) Tunnel (fans at the end of the building); (2) Semitunnel (fans at the middle of the building); and (3) Improved Semitunnel (with improved window distribution). For each distribution, air velocity and temperature at the height of the broilers are evaluated at different outdoor conditions. The Index of Temperature and Velocity (ITV) was used as an indicator of animal comfort. Improved tunnel presented more homogeneous values of velocity and air temperature, with average velocity of 0.89 ± 0.30m.s-1 and average temperature of 23.37 ± 0.79ºC. This distribution had the highest comfort area considering air velocity and temperature (88.45% and 94.52% of the area, respectively). The lowest average ITV corresponded to tunnel type (23.24 ± 1.54ºC) but the highest proportion of comfort zone considering ITV (ITV<25) corresponded to the improved semitunnel (90.35% of the area). The three configurations maintained a productive environment of ITV. The simulation results were similar to the literature indications for velocities and temperatures at animal level.Guerra Galdo, EH.; Calvet Sanz, S.; Estellés Barber, F.; López Jiménez, PA. (2015). CFD model for ventilation assessment in poultry houses with different distribution of windows. International Journal of Energy and Environment. 6(5):411-424. http://hdl.handle.net/10251/62072S4114246

    Modulation of innate immune responses at birth by prenatal malaria exposure and association with malaria risk during the first year of life

    Get PDF
    Background: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. Methods: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants’ clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. Results: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/ 8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. Conclusions: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of lif

    Practical recommendations on the use of lenalidomide in the management of myelodysplastic syndromes

    Get PDF
    Lenalidomide, an oral immunomodulatory agent, has received approval in the USA from the Food and Drug Administration (FDA) for the management of myelodysplastic syndromes (MDS) classified by the International Prognostic Scoring System (IPSS) as low risk or intermediate-1 risk and with a deletion 5q (del(5q)) cytogenetic abnormality. Although some patients with del(5q) have a relatively good prognosis, all del(5q) patients will become transfusion-dependent at some point during the course of their disease. The results of two clinical trials in more than 160 patients with MDS have demonstrated clear therapeutic benefits of lenalidomide, with >60% of patients achieving independence from transfusion during therapy, irrespective of age, prior therapy, sex, or disease-risk assessment. The recommendations presented in this review will aid the safe administration of lenalidomide for the treatment of patients with low-risk or intermediate-1-risk MDS and a del(5q) cytogenetic abnormality, and they will help physicians avoid unnecessary dose reduction or interruption, thus assuring the best efficacy for patients

    Madin-Darby bovine kidney (MDBK) cells are a suitable cell line for the propagation and study of the bovine poxvirus lumpy skin disease virus

    Get PDF
    Lumpy skin disease virus (LSDV) is a poxvirus that causes systemic disease in cattle, resulting in substantial economic loss to affected communities. LSDV is a rapidly emerging pathogen of growing global concern that recently spread from Africa and the Middle East into Europe and Asia, impacting the cattle population in these regions. An increase in research efforts into LSDV is required to address key knowledge gaps, however this is hampered by lack of suitable cell lines on which to propagate and study the virus. In this work we describe the replication and spread of LSDV on Madin-Darby bovine kidney (MDBK) cells, and the formation of foci-type poxvirus plaques by LSDV on MDBK cells. Methods utilising MDBK cells to quantify neutralising antibodies to LSDV, and to purify LSDV genomic DNA suitable for short read sequencing are described. These research methods broaden the tools available for LSDV researchers and will facilitate the gathering of evidence to underpin the development of LSD control and prevention programmes

    Performance of the MALTA Telescope

    Get PDF
    MALTA is part of the Depleted Monolithic Active Pixel sensors designed in Tower 180nm CMOS imaging technology. A custom telescope with six MALTA planes has been developed for test beam campaigns at SPS, CERN, with the ability to host several devices under test. The telescope system has a dedicated custom readout, online monitoring integrated into DAQ with realtime hit map, time distribution and event hit multiplicity. It hosts a dedicated fully configurable trigger system enabling to trigger on coincidence between telescope planes and timing reference from a scintillator. The excellent time resolution performance allows for fast track reconstruction, due to the possibility to retain a low hit multiplicity per event which reduces the combinatorics. This paper reviews the architecture of the system and its performance during the 2021 and 2022 test beam campaign at the SPS North Area
    corecore