39 research outputs found

    Corticosterone metabolite concentration is not related to problem solving in the fawn-footed mosaic-tailed rat Melomys cervinipes

    Get PDF
    SIMPLE SUMMARY: When environments rapidly change, animals must respond through adjustments in their behaviour and cognition, which are largely controlled by physiological processes. In particular, glucocorticoids, such as corticosterone, are important adrenocortical hormones facilitating behavioural and cognitive adjustments. However, we know relatively little about how adrenocortical activity affects problem solving in animals. We therefore studied whether adrenocortical activity was related to problem solving in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples and measured glucocorticoid metabolite hormone concentrations as a measure of adrenocortical activity using an enzyme immunoassay. Corticosterone metabolite concentrations were then compared to problem solving measured using five food-baited puzzles and one escape-motivated puzzle. Interestingly, adrenocortical activity was not related to how quickly problems were solved, or how much the rats interacted with the problems. However, given that adrenocortical activity is involved in multiple processes, future studies should also compare behaviour to other physiological measures. ABSTRACT: Animals can respond physiologically, such as by adjusting glucocorticoid hormone concentrations, to sudden environmental challenges. These physiological changes can then affect behavioural and cognitive responses. While the relationships between adrenocortical activity and behaviour and cognition are well documented, results are equivocal, suggesting species-specific responses. We investigated whether adrenocortical activity, measured using corticosterone metabolite concentration, was related to problem solving in an Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). Mosaic-tailed rats live in complex environments that are prone to disturbance, suggesting a potential need to solve novel problems, and have been found to show relationships between physiology and other behaviours. We measured problem solving using five food-baited puzzles (matchbox and cylinder in the home cage, and activity board with pillars to push, tiles to slide and levers to lift in an open field), and an escape-motivated obstruction task in a light/dark box. Faecal samples were collected from individuals during routine cage cleaning. Adrenocortical activity was evaluated non-invasively by measuring faecal corticosterone metabolites using an enzyme immunoassay, which was biochemically and biologically validated. Despite varying over time, adrenocortical activity was not significantly related to problem solving success or time spent interacting for any task. However, as adrenocortical activity is reflective of multiple physiological processes, including stress and metabolism, future studies should consider how other measures of physiology are also linked to problem solving

    Using ACTH Challenges to Validate Techniques for Adrenocortical Activity Analysis in Various African Wildlife Species

    Get PDF
    Abstract: Monitoring adrenocortical activity using fecal hormonal analysis can provide information on how environmental changes are affecting non-domestic species health and success in the field; however, this noninvasive method needs proper validation to ensure that analysis reflects true physiological events. Our objectives were to use adrenocorticotropic hormone (ACTH) challenges as a physiological validation method to test the suitability of a new corticosterone enzyme immunoassay (EIA) to accurately assess the adrenocortical activity using fecal samples in four African wildlife species-the black rhinoceros (rhino; Diceros bicornis), African elephant (Loxodonta africana), chimpanzee (Pan troglodytes) and African lion (Panthera leo krugeri). In the rhino and elephant, fecal Glucocorticoid metabolites (GC) surged 75 and 51 h post-ACTH injection, respectively. In the chimpanzee, fecal GC metabolites peaked at 29 h post-injection. And the lion had a peak of fecal GC at 24 h post-ACTH. This study determined that adrenocortical activity was reflected in concentrations of fecal GC metabolites suggesting that this corticosterone EIA is an effective technique for the monitoring stress in four African species

    Parental habituation to human disturbance over time reduces fear of humans in coyote offspring

    Get PDF
    A fundamental tenet of maternal effects assumes that maternal variance over time should have discordant consequences for offspring traits across litters. Yet, seldom are parents observed across multiple reproductive bouts, with few studies considering anthropogenic disturbances as an ecological driver of maternal effects. We observed captive coyote (Canis latrans) pairs over two successive litters to determine whether among‐litter differences in behavior (i.e., risk‐taking) and hormones (i.e., cortisol and testosterone) corresponded with parental plasticity in habituation. Thus, we explicitly test the hypothesis that accumulating experiences of anthropogenic disturbance reduces parental fear across reproductive bouts, which should have disparate phenotypic consequences for first‐ and second‐litter offspring. To quantify risk‐taking behavior, we used foraging assays from 5–15 weeks of age with a human observer present as a proxy for human disturbance. At 5, 10, and 15 weeks of age, we collected shaved hair to quantify pup hormone levels. We then used a quantitative genetic approach to estimate heritability, repeatability, and between‐trait correlations. We found that parents were riskier (i.e., foraged more frequently) with their second versus first litters, supporting our prediction that parents become increasingly habituated over time. Second‐litter pups were also less risk‐averse than their first‐litter siblings. Heritability for all traits did not differ from zero (0.001–0.018); however, we found moderate support for repeatability in all observed traits (r = 0.085–0.421). Lastly, we found evidence of positive phenotypic and cohort correlations among pup traits, implying that cohort identity (i.e., common environment) contributes to the development of phenotypic syndromes in coyote pups. Our results suggest that parental habituation may be an ecological cue for offspring to reduce their fear response, thus emphasizing the role of parental plasticity in shaping their pups’ behavioral and hormonal responses toward humans

    Olfactory attractants and parity affect prenatal androgens and territoriality of coyote breeding pairs

    Get PDF
    Hormones are fundamental mediators of personality traits intimately linked with reproductive success. Hence, alterations to endocrine factors may dramatically affect individual behavior that has subsequent fitness consequences. Yet it is unclear how hormonal or behavioral traits change with environmental stressors or over multiple reproductive opportunities, particularly for biparental fauna. To simulate an environmental stressor, we exposed captive coyote (Canis latrans) pairs to novel coyote odor attractants (i.e. commercial scent lures) midgestation to influence territorial behaviors, fecal glucocorticoid (FGMs) and fecal androgen metabolites (FAMs). In addition, we observed coyote pairs as first-time and experienced breeders to assess the influence of parity on our measures. Treatment pairs received the odors four times over a 20-day period, while control pairs received water. Odor-treated pairs scent-marked (e.g. urinated, ground scratched) and investigated odors more frequently than control pairs, and had higher FAMs when odors were provided. Pairs had higher FAMs as first-time versus experienced breeders, indicating that parity also affected androgen production during gestation. Moreover, repeatability in scent-marking behaviors corresponded with FGMs and FAMs, implying that coyote territoriality during gestation is underpinned by individually-specific hormone profiles. Our results suggest coyote androgens during gestation are sensitive to conspecific olfactory stimuli and prior breeding experience. Consequently, fluctuations in social or other environmental stimuli as well as increasing parity may acutely affect coyote traits essential to reproductive success

    Olfactory attractants and parity affect prenatal androgens and territoriality of coyote breeding pairs

    Get PDF
    Hormones are fundamental mediators of personality traits intimately linked with reproductive success. Hence, alterations to endocrine factors may dramatically affect individual behavior that has subsequent fitness consequences. Yet it is unclear how hormonal or behavioral traits change with environmental stressors or over multiple reproductive opportunities, particularly for biparental fauna. To simulate an environmental stressor, we exposed captive coyote (Canis latrans) pairs to novel coyote odor attractants (i.e. commercial scent lures) midgestation to influence territorial behaviors, fecal glucocorticoid (FGMs) and fecal androgen metabolites (FAMs). In addition, we observed coyote pairs as first-time and experienced breeders to assess the influence of parity on our measures. Treatment pairs received the odors four times over a 20-day period, while control pairs received water. Odor-treated pairs scent-marked (e.g. urinated, ground scratched) and investigated odors more frequently than control pairs, and had higher FAMs when odors were provided. Pairs had higher FAMs as first-time versus experienced breeders, indicating that parity also affected androgen production during gestation. Moreover, repeatability in scent-marking behaviors corresponded with FGMs and FAMs, implying that coyote territoriality during gestation is underpinned by individually-specific hormone profiles. Our results suggest coyote androgens during gestation are sensitive to conspecific olfactory stimuli and prior breeding experience. Consequently, fluctuations in social or other environmental stimuli as well as increasing parity may acutely affect coyote traits essential to reproductive success

    Investigation of techniques to measure cortisol and testosterone concentrations in coyote hair

    Get PDF
    Long-term noninvasive sampling for endangered or elusive species is particularly difficult due to the challenge of collecting fecal samples before hormone metabolite desiccation, as well as the difficulty in collecting a large enough sample size from all individuals. Hair samples may provide an environmentally stable alternative that provides a long-term assessment of stress and reproductive hormone profiles for captive, zoo, and wild mammals. Here, we extracted and analyzed both cortisol and testosterone in coyote (Canis latrans) hair for the first time. We collected samples from 5-week old coyote pups (six female, six male) housed at the USDA-NWRC Predator Research Facility in Millville, UT. Each individual pup was shaved in six different locations to assess variation in concentrations by body region. We found that pup hair cortisol (F5,57.1 = 0.47, p = 0.80) and testosterone concentrations (F5,60 = 1.03, p = 0.41) did not differ as a function of body region. Male pups generally had higher cortisol concentrations than females (males = 17.71 ± 0.85 ng/g, females = 15.48 ± 0.24 ng/g; F1,57.0 = 5.06, p = 0.028). Comparatively, we did not find any differences between male and female testosterone concentrations (males = 2.86 ± 0.17 ng/g, females = 3.12 ± 0.21 ng/g; F1,60 = 1.42, p = 0.24). These techniques represent an attractive method in describing long-term stress and reproductive profiles of captive, zoo-housed, and wild mammal populations

    An Unidentified Filarial Species and its Impact on Fitness in Wild Populations of the Black-Footed Ferret (\u3ci\u3eMustela nigripes\u3c/i\u3e)

    Get PDF
    Disease can threaten the restoration of endangered species directly by substantially decreasing host survival or indirectly via incremental decreases in survival and reproduction. During a biomedical survey of reintroduced populations of the highly endangered black-footed ferret from 2002 to 2005, microfilariae discovered in the blood were putatively identified as Dirofilaria immitis, and widespread screening was initiated using a commercially available antigen-based ELISA test. A subset of animals (n = 16) was screened for D. immitis using a highly sensitive PCR-based assay. Microfilariae were also molecularly and morphologically characterized. Of 198 animals at six reintroduction sites, 12% had positive results using the ELISA test. No antigen-positive animals which were screened via PCR (n = 11) had positive PCR results, and all antigen-positive animals (n=24) were asymptomatic. No significant differences were found in body mass of antigen-positive (male: 1223±82 g [mean±SD], female: 726±75 g) vs. antigen-negative (male: 1,198±119 g, female: 710±53 g) individuals (P=0.4). Antigen prevalence was lower in juveniles (3%) than adults (12%; P=0.03), and higher in in situ, captive-reared individuals (33%) than wild-born individuals (10%; P=0.005). Morphologic, analysis of microfilariae revealed they were neither D. immitis nor any other previously characterized North American species. PCR amplification of the 5S spacer region of rDNA revealed that the filarial sequence shared only 76% identity with D. immitis. This previously unidentified filarial sequence was present in all antigen positive animals (11 of 11 tested). It appears that black-footed ferrets were infected with a previously undescribed species of filaria whose antigen cross-reacted with the ELISA assay, although further analysis is needed to make a conclusive statement. Nonetheless, this previously undescribed filaria does not appear to threaten recovery for this highly endangered mammal

    Genotypic and phenotypic consequences of reintroduction history in the black-footed ferret (Mustela nigripes)

    Get PDF
    Abstract Population augmentation with translocated individuals has been shown to alleviate the effects of bottlenecks and drift. The first step to determine whether restoration for genetic considerations is warranted is to genetically monitor reintroduced populations and compare results to those from the source. To assess the need for genetic restoration, we evaluated genetic diversity and structure of reintroduced (n = 3) and captive populations of the endangered black-footed ferret (Mustela nigripes). We measured genotypic changes among populations using seven microsatellite markers and compared phenotypic changes with eight morphometric characters. Results indicated that for the population which rapidly grew postreintroduction, genetic diversity was equivalent to the captive, source population. When growth languished, only the population that was augmented yearly maintained diversity. Without augmentation, allelic diversity declined precipitously and phenotypic changes were apparent. Ferrets from the genetically depaupertate population had smaller limbs and smaller overall body size than ferrets from the two populations with greater diversity. Population divergence (F ST = 0.10 ± 0.01) was surprisingly high given the common source of populations. Thus, it appears that 5-10 years of isolation resulted in both genotypic divergence and phenotypic changes to populations. We recommend translocation of 30-40 captive individuals per annum to reintroduction sites which have not become established quickly. This approach will maximize the retention of genetic diversity, yet maintain the beneficial effects of local adaptation without being swamped by immigration

    It takes two: Evidence for reduced sexual conflict over parental care in a biparental canid

    Get PDF
    In biparental systems, sexual conflict over parental investment predicts that the parent providing care experiences greater reproductive costs. This inequality in parental contribution is reduced when offspring survival is dependent on biparental care. However, this idea has received little empirical attention. Here, we determined whether mothers and fathers differed in their contribution to care in a captive population of coyotes (Canis latrans). We performed parental care assays on 8 (n = 8 males, 8 females) mated pairs repeatedly over a 10-week period (i.e., 5–15 weeks of litter age) when pairs were first-time breeders (2011), and again as experienced breeders (2013). We quantified consistent individual variation (i.e., repeatability) in 8 care behaviors and examined within- and among-individual correlations to determine if behavioral plasticity within or parental personality across seasons varied by sex. Finally, we extracted hormone metabolites (i.e., cortisol and testosterone) from fecal samples collected during gestation to describe potential links between hormonal mechanisms and individual consistency in parental behaviors. Parents differed in which behaviors were repeatable: mothers demonstrated consistency in provisioning and pup-directed aggression, whereas fathers were consistent in pup checks. However, positive within-individual correlations for identical behaviors (e.g., maternal versus paternal play) suggested that the rate of change in all behaviors except provisioning was highly correlated between the sexes. Moreover, positive among-individual correlations among 50% of identical behaviors suggested that personality differences across parents were highly correlated. Lastly, negative among-individual correlations among pup-directed aggression, provisioning, and gestational testosterone in both sexes demonstrated potential links between preparental hormones and labile parental traits. We provide novel evidence that paternal contribution in a biparental species reaches near equivalent rates of their partners

    It takes two: Evidence for reduced sexual conflict over parental care in a biparental canid

    Get PDF
    In biparental systems, sexual conflict over parental investment predicts that the parent providing care experiences greater reproductive costs. This inequality in parental contribution is reduced when offspring survival is dependent on biparental care. However, this idea has received little empirical attention. Here, we determined whether mothers and fathers differed in their contribution to care in a captive population of coyotes (Canis latrans). We performed parental care assays on 8 (n = 8 males, 8 females) mated pairs repeatedly over a 10-week period (i.e., 5–15 weeks of litter age) when pairs were first-time breeders (2011), and again as experienced breeders (2013). We quantified consistent individual variation (i.e., repeatability) in 8 care behaviors and examined within- and among-individual correlations to determine if behavioral plasticity within or parental personality across seasons varied by sex. Finally, we extracted hormone metabolites (i.e., cortisol and testosterone) from fecal samples collected during gestation to describe potential links between hormonal mechanisms and individual consistency in parental behaviors. Parents differed in which behaviors were repeatable: mothers demonstrated consistency in provisioning and pup-directed aggression, whereas fathers were consistent in pup checks. However, positive within-individual correlations for identical behaviors (e.g., maternal versus paternal play) suggested that the rate of change in all behaviors except provisioning was highly correlated between the sexes. Moreover, positive among-individual correlations among 50% of identical behaviors suggested that personality differences across parents were highly correlated. Lastly, negative among-individual correlations among pup-directed aggression, provisioning, and gestational testosterone in both sexes demonstrated potential links between preparental hormones and labile parental traits. We provide novel evidence that paternal contribution in a biparental species reaches near equivalent rates of their partners
    corecore