1,153 research outputs found

    Two-dimensional conical dispersion in ZrTe5 evidenced by optical spectroscopy

    Full text link
    Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal, with a single conical band, located at the center of the Brillouin zone. The cone's lack of protection by the lattice symmetry immediately sparked vast discussions about the size and topological/trivial nature of a possible gap opening. Here we report on a combined optical and transport study of ZrTe5, which reveals an alternative view of electronic bands in this material. We conclude that the dispersion is approximately linear only in the a-c plane, while remaining relatively flat and parabolic in the third direction (along the b axis). Therefore, the electronic states in ZrTe5 cannot be described using the model of 3D Dirac massless electrons, even when staying at energies well above the band gap 6 meV found in our experiments at low temperatures.Comment: Physical Review Letters 122, 217402 (2019). Corrected acknowledgment

    Optical conductivity signatures of open Dirac nodal lines

    Full text link
    We investigate the optical conductivity and far-infrared magneto-optical response of BaNiS2_2, a simple square-lattice semimetal characterized by Dirac nodal lines that disperse exclusively along the out-of-plane direction. With the magnetic field aligned along the nodal line the in-plane Landau level spectra show a nearly B\sqrt{B} behavior, the hallmark of a conical-band dispersion with a small spin-orbit coupling gap. The optical conductivity exhibits an unusual temperature-independent isosbestic line, ending at a Van Hove singularity. First-principles calculations unambiguously assign the isosbestic line to transitions across Dirac nodal states. Our work suggests a universal topology of the electronic structure of Dirac nodal lines

    Linear behavior of the optical conductivity and incoherent charge transport in BaCoS2{\mathrm{BaCoS}}_{2}

    Get PDF
    Optical conductivity measurements on a BaCoS2 single crystal unveil an unusual linear behavior over a broad spectral range. In the paramagnetic phase above 300 K, the spectrum shows no gap, which contradicts the previously proposed scenario of a charge-transfer Mott insulator. Ab initio dynamical mean field theory calculations including a retarded Hubbard interaction explain the data in terms of an incipient opening of a Co(3d)−S(3p) charge-transfer gap concomitant to incoherent charge transport driven by electronic correlations. These results point to a non-Fermi liquid scenario with Hund's metal properties in the paramagnetic state, which arises from an incipient Mott phase destabilized by low-energy charge fluctuations across the vanishing 3d−3p charge-transfer gap

    Two-dimensional conical dispersion in ZrTe5{\mathrm{ZrTe}}_{5} evidenced by optical spectroscopy

    Get PDF
    Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal, with a single conical band, located at the center of the Brillouin zone. The cone’s lack of protection by the lattice symmetry immediately sparked vast discussions about the size and topological or trivial nature of a possible gap opening. Here, we report on a combined optical and transport study of ZrTe5, which reveals an alternative view of electronic bands in this material. We conclude that the dispersion is approximately linear only in the a-c plane, while remaining relatively flat and parabolic in the third direction (along the b axis). Therefore, the electronic states in ZrTe5 cannot be described using the model of 3D Dirac massless electrons, even when staying at energies well above the band gap 2Δ ¼ 6 meV found in our experiments at low temperatures

    Bulk charge density wave and electron-phonon coupling in superconducting copper oxychlorides

    Full text link
    Bulk charge density waves (CDWs) are now reported in nearly all high-temperature superconducting (HTS) cuprates, with the noticeable exception of one particular family: the copper oxychlorides. Here, we used resonant inelastic X-ray scattering (RIXS) to reveal a bulk CDW in these materials. Combining RIXS with non-resonant IXS, we investigate the interplay between the lattice excitations and the CDW, and evidence bond-stretching (BS) phonon anomalies at the CDW wave-vector. We propose that such electron-phonon anomalies occur in the presence of dispersive charge excitations emanating from the CDW and interacting with the BS phonon. Our observations in a structurally simple cuprate promises to better connect bulk and surface properties and bridge the gap between theory and experiment

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    EuCd2_2As2_2: a magnetic semiconductor

    Full text link
    EuCd2_2As2_2 is now widely accepted as a topological semimetal in which a Weyl phase is induced by an external magnetic field. We challenge this view through firm experimental evidence using a combination of electronic transport, optical spectroscopy and excited-state photoemission spectroscopy. We show that the EuCd2_2As2_2 is in fact a semiconductor with a gap of 0.77 eV. We show that the externally applied magnetic field has a profound impact on the electronic band structure of this system. This is manifested by a huge decrease of the observed band gap, as large as 125~meV at 2~T, and consequently, by a giant redshift of the interband absorption edge. However, the semiconductor nature of the material remains preserved. EuCd2_2As2_2 is therefore a magnetic semiconductor rather than a Dirac or Weyl semimetal, as suggested by {\em ab initio} computations carried out within the local spin-density approximation.Comment: Accepted for publication in Physical Review Letter

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore