5,035 research outputs found

    Portability of Prolog programs: theory and case-studies

    Get PDF
    (Non-)portability of Prolog programs is widely considered as an important factor in the lack of acceptance of the language. Since 1995, the core of the language is covered by the ISO standard 13211-1. Since 2007, YAP and SWI-Prolog have established a basic compatibility framework. This article describes and evaluates this framework. The aim of the framework is running the same code on both systems rather than migrating an application. We show that today, the portability within the family of Edinburgh/Quintus derived Prolog implementations is good enough to allow for maintaining portable real-world applications.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    Detecting multiparticle entanglement of Dicke states

    Get PDF
    Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wide class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of -11.4(5) dB.Comment: 5 pages, 4 figure

    Dimensional crossover for the beyond-mean-field correction in Bose gases

    Full text link
    We present a detailed beyond-mean-field analysis of a weakly interacting Bose gas in the crossover from three to low dimensions. We find an analytical solution for the energy and provide a clear qualitative picture of the crossover in the case of a box potential with periodic boundary conditions. We show that the leading contribution of the confinement-induced resonance is of beyond-mean-field order and calculate the leading corrections in the three- and low-dimensional limits. We also characterize the crossover for harmonic potentials in a model system with particularly chosen short- and long-range interactions and show the limitations of the local-density approximation. Our analysis is applicable to Bose-Bose mixtures and gives a starting point for developing the beyond-mean-field theory in inhomogeneous systems with long-range interactions such as dipolar particles or Rydberg-dressed atoms.Comment: 5 pages and supplemental material, revised treatment of the harmonic confinemen

    Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    Get PDF
    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with experimental results in Phys. Rev. Lett. 105, 135302 (2010). It is shown that the dynamics of a spinor BEC initially prepared in an unstable Zeeman state mF=0 (|0>) can be understood by approximating the effective trapping potential for the state |+-1> with a cylindrical box potential. The resonances in the creation efficiency of these atom pairs can be traced back to excitation modes of this confinement. The understanding of these excitation modes allows for a detailed characterization of the symmetry breaking mechanism, showing how a twofold spontaneous breaking of spatial and spin symmetry can occur. In addition a detailed account of the experimental methods for the preparation and analysis of spinor quantum gases is given.Comment: 12 pages, 14 figure

    Modeling the Singlet State with Local Variables

    Get PDF
    A local-variable model yielding the statistics from the singlet state is presented for the case of inefficient detectors and/or lowered visibility. It has independent errors and the highest efficiency at perfect visibility is 77.80%, while the highest visibility at perfect detector-efficiency is 63.66%. Thus, the model cannot be refuted by measurements made to date.Comment: 15 pages, 13 figure

    Visual road following using intrinsic images

    Get PDF
    We present a real-time visual-based road following method for mobile robots in outdoor environments. The approach combines an image processing method, that allows to retrieve illumination invariant images, with an efficient path following algorithm. The method allows a mobile robot to autonomously navigate along pathways of different types in adverse lighting conditions using monocular vision

    Rapid plant DNA and RNA extraction protocol using a bench drill

    Get PDF
    Plant DNA and RNA extraction methods are well established, with a wide range of protocols, depending on the purposes of each laboratory/research. Nowadays, quick, inexpensive and easy plant DNA and RNA extraction methods are highly sought after. We developed an optimized protocol for plant DNA and RNA extraction that uses an inexpensive bench drill and plastic bags and does not require liquid nitrogen. DNA from leaves and RNA from leaves and roots of banana, pineapple, citrus, papaya, passion fruit and cassava, were extracted using a basic cetyltrimethylammonium bromide method. Both nucleic acids were quantified and evaluated for quality based on agarose gel electrophoresis. The DNA and RNA extractions were successful for all species, and RNA quality in pellets was maintained after storage at room temperature for three weeks. This protocol can reduce costs considerably in laboratories with ongoing routine activities of DNA and RNA extraction for genetic diversity and gene expression analyses, where other conventional methods have not been successful due to explant, condition of samples and quantity and quality of nucleic acids. This is especially relevant for many laboratories in developing countries where the cost and availability of liquid nitrogen may be a constraint

    Sketching phase diagrams using low-depth variational quantum algorithms

    Full text link
    Mapping out phase diagrams of quantum systems using classical simulations can be challenging or intractable due to the computational resources required to simulate even small quantum systems far away from the thermodynamic limit. We investigate using quantum computers and the Variational Quantum Eigensolver (VQE) for this task. In contrast to the task of preparing the exact ground state using VQE, sketching phase diagrams might require less quantum resources and accuracy, because low fidelity approximations to the ground state may be enough to correctly identify different phases. We used classical numerical simulations of low-depth VQE circuits to compute order parameters for four well-studied spin and fermion models which represent a mix of 1D and 2D, and exactly-solvable and classically hard systems. We find that it is possible to predict the location of phase transitions up to reasonable accuracy using states produced by VQE even when their overlap with the true ground state is small. Further, we introduce a model-agnostic predictor of phase transitions based on the speed with which the VQE energy improves with respect to the circuit depth, and find that in some cases this is also able to predict phase transitions.Comment: 10 + 5 pages, 8 + 10 figure
    • …
    corecore