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We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry
breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of
the processes and provides good quantitative agreement with the experimental results of Scherer et al. [Phys.
Rev. Lett. 105, 135302 (2010)]. It is shown that the dynamics of a spinor BEC initially prepared in an unstable
Zeeman state mF = 0 (|0〉) can be understood by approximating the effective trapping potential for the state
|±1〉 with a cylindrical box potential. The resonances in the creation efficiency of these atom pairs can be traced
back to excitation modes of this confinement. The understanding of these excitation modes allows for a detailed
characterization of the symmetry-breaking mechanism, showing how a twofold spontaneous breaking of spatial
and spin symmetry can occur. In addition, a detailed account of the experimental methods for the preparation
and analysis of spinor quantum gases is given.
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I. INTRODUCTION

Spontaneous symmetry breaking is a fundamental process
that plays a key role in many fields of physics [1]. In particular,
it appears in physical scenarios ranging from cosmology [2]
and particle physics [3] to liquid crystals [4] and superfluid
helium [5]. In these scenarios, small fluctuations typically
break some symmetry of the system and thus determine its
dynamical evolution and final state. In particular, this can lead
to final states that do not reflect the underlying symmetry of
the dynamics because the symmetric state is unstable.

A number of recent experiments have shown that Bose-
Einstein condensates (BECs) can provide unprecedented
possibilities to study symmetry-breaking processes [6]. In
particular, the ability to investigate nonequilibrium dynamics
[7], including the formation of topological defects via the
Kibble-Zurek mechanism [2,5], allows for the detailed analysis
of dynamical symmetry breaking. The experimental realiza-
tions are relatively diverse and include vortex formation [8],
spinor BECs [9,10], and BECs with dipolar interaction [11],
as well as BECs coupled to an optical cavity [12]. Moreover,
symmetry breaking is crucial in understanding Bose-Einstein
condensates and their coherence properties [13,14].

In particular, spinor Bose-Einstein condensates [15],
formed from multiple spin components of a given species, offer
fascinating opportunities to analyze spontaneous symmetry
breaking. Symmetry breaking was first observed in a spinor
BEC quenched from a polar into a ferromagnetic phase [16].
During the subsequent dynamics, ferromagnetic domains and
topological defects were observed in the transverse mag-
netization, whereas the longitudinal magnetization remained
negligible. These experiments provided major insight into the
formation of topological defects; however, the effects of the
external trapping potential were not investigated. A subsequent
experiment investigated the decay of an initial spin texture
into a domain structure [11]. Later experiments investigated

the spontaneous formation of patterns in one dimension [17]
and provided a detailed understanding of the spatial and spin
symmetry-breaking processes [18].

The theoretical investigation of spinor BEC and of
symmetry-breaking processes therein is of ongoing inter-
est [6]. Prominent examples include the formation of spin
structures breaking the chiral symmetry in spinor condensates
with ferromagnetic interactions [19], symmetry breaking in a
double-well potential [20], and the relevance of thermal atoms
for spontaneous magnetization [21].

Within our work the particularly interesting case of spinor
BECs initially prepared in an unstable mF = 0 (|0〉) Zeeman
state is investigated. In this case spin-changing collisions lead
to the creation of correlated atom pairs in mF = ±1 (|±1〉)
in a process equivalent to parametric down-conversion in
nonlinear optics [22]. Resonances in the creation efficiency
of these atom pairs can be traced back to specific excitation
modes of the effective confinement [23]. The understanding of
these excitation modes allows for a detailed characterization
of the symmetry-breaking mechanism [18]. It was shown that
a twofold spontaneous breaking of spatial and spin symmetry
in the amplified mF = ±1 clouds can occur.

Here, we present an analytical model for the theoretical
analysis of spin dynamics and symmetry breaking in our
system. We show that an excellent intuitive understanding
and good quantitative agreement with experimental results can
be obtained by approximating the effective trapping potential
with a cylindrical box. This method is used to provide a
detailed analysis of the spin dynamics and symmetry-breaking
processes in Ref. [18]. In addition, a detailed account of the
experimental methods and the analysis techniques is provided.

The paper is structured as follows: Section II describes the
production of quantum gases and the experimental techniques
used to prepare, investigate and detect spinor BECs. Section III
introduces a theoretical analysis of the system in a simplified
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box potential. This provides the basis for an understanding of
the spontaneous breaking of the spatial and the longitudinal
spin symmetry. Section IV highlights the experimental results
on spontaneous symmetry breaking in view of the occupation
of higher spatial modes.

II. EXPERIMENTAL MEASUREMENT
OF SPIN DYNAMICS

The excitation modes within a spinor condensate and the
associated rate of spin-changing collisions depend strongly on
the confining potential and the initial spin population. In the
following, the experimental production of spinor gases and
their analysis is therefore described in detail.

A. Production of quantum gases

Initially 5 × 109 87Rb atoms are loaded from the back-
ground vapor into a magneto-optical trap using light-induced
atom desorption [24]. After molasses cooling and optical
pumping into the low-field seeking state |F = 2,mF = 2〉 ≡
|2,2〉, the atoms are transferred to a magnetic quadrupole trap
and mechanically transported into the experiment chamber
formed by a glass cell at ultrahigh vacuum. In the next
step the atoms are loaded into a harmonic magnetic trap
in quadrupole-Ioffe configuration (QUIC) [25], with trap
frequencies of 2π × 230 Hz (2π × 23 Hz) in radial (axial)
direction, where they are cooled by forced radio-frequency
evaporation. This evaporation is stopped shortly before reach-
ing quantum degeneracy and the atoms are transferred [26]
into a crossed-beam dipole trap (see Sec. II B), which allows
trapping of all Zeeman states. The atoms are further evaporated
by lowering the intensities of the two beams until pure BECs
of 5 × 104 atoms in the state |2,2〉 are reached. To initiate
spin dynamics, the atoms are transferred to the state |2,0〉
(see Sec. II C) and the intensities of the dipole trap beams are
changed to create the desired trapping potential (see Sec. II B).

B. Dipole trap

The experiments are performed in a red-detuned, crossed-
beam dipole trap at a wavelength of 1064 nm. The linearly
polarized light provides an attractive potential, which is
independent of the spin state of the atoms. The two beams are
aligned perpendicular to each other in the horizontal plane with
waists of 54 μm (beam in x direction) and 28 μm (beam in y

direction), as shown in Fig. 1. Depending on the power Px and
Py in these beams, a variety of trapping configurations can be
produced. In all configurations, the lowest trap frequency ωy is
realized in the y direction, since only the weakly focused beam
in x direction significantly contributes to it. For a given power
Py , three regimes can be identified depending on the power
Px . For low powers Px , a trap with the strongest direction
parallel to gravity (ωz > ωx) is realized, while high powers
Px lead to a trap with the highest frequency perpendicular to
gravity (ωx > ωz). In the following, these configurations are
jointly referred to as elliptical traps. Importantly, there is an
intermediate power Px where a trap with nearly equal trapping
frequencies ωz = ωx can be realized. This is referred to as a
cylindrical trap.

y beam x beam

atomic cloud

x

y

z

FIG. 1. (Color online) Sketch of the crossed-beam dipole trap.
The two beams are oriented horizontally and perpendicular to each
other. The intersection of the two beams is located at the center of the
quadrupole coils of the QUIC trap [25].

The realization of the trapping configurations outlined
above is very sensitive to misalignments and to small astig-
matisms of the two beams. In particular, these effects can lead
to a rotation of the principal axes of the elliptical trap in the
xz plane as a function of the relative powers Px and Py . If
these effects are sufficiently large, it is indeed impossible to
realize a cylindrical trap at all. Nevertheless, this effect can be
useful to implement an elliptical trap whose strongest axis has
an arbitrary adjustable angle relative to gravity.

It is hence necessary to determine both the trap frequencies
and the orientation of the principal axes to adjust the desired
trapping potential. To identify these quantities we rely on the
center-of-mass oscillation of the distribution, which is initiated
by displacing a BEC in the harmonic potential [27]. Since this
displacement is not necessarily parallel to one of the principal
axes, it results in an oscillation along multiple trap axes. After
various oscillation times and a fixed free evolution in time-
of-flight (TOF), the x and the z positions of the clouds are
detected by taking absorption images along the y axis. These
positions reflect the velocities of the cloud in these directions.

Figures 2 (a) and 2(b) show the recorded positions. Due to
the projection of the trap axes onto the CCD camera axes, a
beat signal of two overlapping damped oscillations is observed.
If the two positions are plotted against each other as shown
in Fig. 2(c), this corresponds to a Lissajous figure bounded
by a rotated rectangle. To extract the oscillation frequencies
and the directions of the principal axes, a superposition of two
independent oscillations with mixing angle α is fitted to the
data. A principal axes transformation to a frame rotated by α

then leads to a rectangle parallel to the coordinate axes in the
xz plane, as shown in Fig. 2(d).

Figure 3 shows the result of such a measurement for a
dipole trap with a deliberate misalignment of the two beams.
When Px is increased while Py is kept fixed, both strong trap
frequencies rise and the trap rotates by almost 90 deg. Note,
however, that the two trap frequencies never become identical
and therefore this alignment does not allow for the realization
of a cylindrical trap.

The following steps are typically taken to achieve suffi-
ciently good optical alignment to obtain a cylindrical trap. We
first measure the aspect ratio and orientation of a BEC after a
long TOF and adjust the relative alignment of the beams and
the positions of the focusing lenses. Since the expansion of the
BEC is closely related to the trap’s strength and orientation,
these measurements provide a first indication of its geometry.
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FIG. 2. (Color online) Trap frequency measurement in an ellipti-
cal trap. (a–b) Positions of the oscillating atomic cloud after release
from the dipole potential. The line is a fit to the data based on two
oscillations with mixing angle α. (c) Plotting the x and y position
against each other results in a tilted Lissajous-like figure. The tilting
angle is equivalent to mixing angle obtained from the fit to the data.
(d) A principal axes transformation results in a rectangle which is
parallel to the coordinate axes.

In a second step the trap frequencies are measured as a function
of Px , as described above. The cylindrical configuration we
typically achieve has trap frequencies of 187, 183, and 67 Hz
and the remaining radial asymmetry is primarily caused by
uncompensated astigmatism.

C. State preparation

The preparation of pure spin states is of fundamental im-
portance for two reasons. Firstly, the parametric amplification
process investigated here starts in the state |2,0〉 and is density
dependent. Therefore as many atoms as possible have to
be transferred from the initial state |2,2〉 to the state |2,0〉.
Moreover, it is important for the investigation of spontaneous
symmetry breaking that the parametric amplification is trig-
gered by quantum fluctuations [22]. Hence the atoms have to
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FIG. 3. (Color online) Dependence of the trap parameters on
the power of the beam in x direction for a trap with a deliberate
misalignment of the two beams. Px is varied from 35 to 180 mW
while Py is kept constant at 24 mW. (a) Intermediate (dots, solid line)
and strong trap frequency (squares, dashed lane). (b) Angle of the
principal axis. All lines are splines to guide the eye.

be transferred without populating any other spin components,
which could act as a spurious seed.

Starting from the state |2,2〉, two strategies can be employed
for the transfer. One option is a rapid adiabatic passage
using rf radiation. However, this method has a number of
disadvantages, since it requires relatively high magnetic fields
(≈80 G) to selectively address the individual Zeeman states.

A more favorable strategy employs two microwave rapid
adiabatic passages (|2,2〉 → |1,1〉 → |2,0〉) to transfer the
atoms into the desired state. This approach only requires low
magnetic fields (≈6 G), reducing the required magnetic ramp
time. In combination with the absence of hyperfine-state-
changing collisions in the state |1,1〉 and a fast microwave
sweep time (5 ms), it thus allows for a larger initial number
of 5 × 104 atoms. Moreover, this method reduces the risk of
producing seed atoms in the states |2, ± 1〉, since it does not
pass any of these during the adiabatic passage.

In addition to this technique, a strong magnetic field
gradient of 58.5 G/cm is applied for 15 ms after the spin
preparation to remove any residual atoms in other states. We
have checked the efficiency of this purification method by
applying it to BECs of 105 atoms prepared in either one of
the states |2, ± 1〉. Since no atoms were observed within the
detection limit of 500 atoms, a lower limit for the removal
efficiency is 99.5%. Hence we estimate that no more than 2.5
atoms remain in the wrong spin state after the preparation
sequence.

D. Spin dynamics and detection

To initiate spin dynamics, the following experimental steps
are taken. During the purification step the power Py is ramped
to 24 mW, whereas Px is adjusted to a value between 35 and
180 mW to realize the desired trap configuration. Subse-
quently, the direction of the applied homogeneous magnetic
field is rotated into the y direction and lowered to a desired
value between 0.12 and 2.5 G in 3 ms. This magnetic field
direction is perpendicular to the two strong trap axes. The
atoms are then held in the trap for a time of 15–21 ms to allow
for spin-changing collisions.

Finally, spin dynamics is stopped by switching off the
trapping beams. During the following TOF evolution the
atomic clouds expand self-similarly [28–32]. A strong mag-
netic field gradient of 37 G/cm is applied in z direction for
3.5 ms to spatially separate the spin components (Stern-
Gerlach technique). After another 1.5 ms of free expansion,
absorption images of the atoms along the y axis are taken.
Typical images are shown in Fig. 4. These images allow for an
analysis of the spatial structure and of the number of atoms in
each spin component. Thus the longitudinal spin orientation
can be determined.

III. SPINOR BEC IN THE BOX POTENTIAL

Figure 4 clearly shows an intriguing spatial structure
of the clouds in the states |2, ± 1〉. In the following, we
develop a simple analytical model that allows for a detailed
understanding of the observed spin excitation modes [18] in
the elliptical and the cylindrical trap.
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FIG. 4. Typical absorption images after spin dynamics at two
magnetic fields. The spin components were separated by an inhomo-
geneous magnetic field. The shape of the clouds in the states |2, ± 1〉
clearly depends on the applied magnetic field and reflects the spin
excitation modes (see Sec. III D).

A. Spinor Hamiltonian

Since the BEC in our experiments is initially in the state
|2,0〉, the dynamics of the spin states can be described with a
spin Bogoliubov ansatz,

ψ̂(�r,t) =

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0
0√

n0(�r)
0
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

δψ̂−2

δψ̂−1

δψ̂0

δψ̂1

δψ̂2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ e−iμt , (1)

where the BEC in the state |2,0〉 is described as a classical field
with the chemical potential μ and the field operators δψ̂mF

for
small fluctuations of each spin state. The population in the
states |2, ± 2〉 can be neglected for the short spin dynamics
times, since the probability of spin-changing collisions to these
states is small due to small Clebsch-Gordan coefficients.

The Hamiltonian of the system Ĥ is given by the sum of
a single particle and an interaction term Ĥ = Ĥ0 + ĤI [33].
The single-particle Hamiltonian is

Ĥ0 =
∫

d3r
∑
mF

ψ̂†
mF

(�r)

[
−h̄2�

2M
+ V (�r) − qm2

F

]
ψ̂mF

(�r),

(2)

where ψ̂mF
(�r) is the field operator for each mF component, and

the external potential is given by V (�r). Since we are interested
in spin-changing collisions, only the quadratic Zeeman energy
−qm2

F needs to be considered. The linear Zeeman effect
does not contribute, since its net energy vanishes due to the
conservation of the total spin orientation.

While restricting the initial dynamics to |2,0〉 ↔ |2, ± 1〉,
the interaction Hamiltonian is [23]

ĤI = 1

2

∫
d3r

∑
mF ,m′

F
,

mf ,m′
f

ψ̂†
mF

(�r)ψ†
m′

F
(�r)U

mf ,m′
f

mF ,m′
F
ψ̂mf

(�r)ψ̂m′
f
(�r),

(3)

with the spin-dependent interaction strength U
mf ,m′

f

mF ,m′
F

≡
U0δmF ,mf

δm′
F ,m′

f
+ U1 �fmF mf

· �fm′
F m′

f
, where �fmF m′

f
=

(f x
mF m′

f
,f

y

mF m′
f
,f z

mF m′
f
)T and f x,y,z are the spin-1 Pauli

matrices. The spin-dependent and the spin-independent
coupling constants are given by U0 = (7g0 + 10g2 +
18g4)/35 and U1 = (−7g0 − 5g2 + 12g4)/35, where gF =
4πh̄aF /M and aF is the s-wave scattering length for the
channel with total spin F .

The resulting Hamiltonian, up to second order in δψ̂±1, is
given by

Ĥ =
∫

d3r
∑

mF =±1

δψ̂†
mF

[Ĥeff + q]δψ̂mF

+�(�r)[δψ̂†
1δψ̂

†
−1 + δψ̂1δψ̂−1], (4)

where q represents the quadratic Zeeman energy. The term
preceded by �(�r) = U1n0(�r) accounts for the spin-changing
collisions and Ĥeff represents the effective single-particle
Hamiltonian

Ĥeff = −−h̄2∇2

2m
+ V (�r) + (U0 + U1)n0(�r) − μ (5)

for the atoms transferred to the state |2, ± 1〉. Hence these
atoms experience an effective trapping potential given by

Veff(�r) = V (�r) + (U0 + U1)n0(�r) − μ. (6)

Based on this Hamiltonian, a full numerical analysis of the
experiments is possible [18]. However, to gain insight into
the underlying physical processes it is advantageous to make a
number of simplifying assumptions discussed in the following.

B. Effective box potential

A closer look at the effective potential Veff allows for
several simplifying assumptions. These approximations result
in an analytically solvable single-particle Hamiltonian and thus
allow for deep insight into the underlying processes.

In the Thomas-Fermi approximation, the density distribu-
tion of the BEC mimics the shape of the trapping potential
n0(�r) ≈ U−1

0 [μ − V (�r)]. Hence within the Thomas-Fermi
radius r < rTF the atoms in the states |2, ± 1〉 experience a
flat-bottomed potential, which is modified by the term U1n0(�r),
corresponding to a small parabolic repulsion. In the presented
analysis, this term is neglected, since it typically has a height
of ≈ h × 30 Hz.

Outside the Thomas-Fermi radius, the potential is given
by the harmonic confinement of the dipole trap V (�r) =
m/2

∑
ω2

i x
2
i , which rises sharply at rTF. In a further step of

simplification, this confinement is approximated by infinite
walls, Veff = ∞ for r > rTF. Within these approximations, the
process can hence be analyzed in a simple box potential with
the size of the Thomas-Fermi radius. This simplified situation
is shown in Fig. 5 for the one-dimensional case.

The choice of trapping configuration allows for another
simplification of the three-dimensional problem. The cylindri-
cal trap configuration has two strong radial trap frequencies
of nearly the same size (ωx = 187 Hz, ωz = 183 Hz) and a
considerably weaker axial trap frequency (ωy = 65 Hz). This
indicates that the analysis can be limited to a two-dimensional
cylindrical box potential to evaluate the radial spin excitation
modes.
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FIG. 5. (Color online) Sketch of the effective potential for
atoms in the states |2, ± 1〉 and its approximation under typical
experimental conditions. The harmonic external potential is modified
by the repulsive interaction with the atoms in the state |2,0〉. The
resulting effective potential (orange) is approximated by a simple
box potential (dashed, black). In addition, the density distributions of
the eigenstates of the one-dimensional box potential are shown at the
position of their eigenenergies (blue).

C. Spinor dynamics in the one-dimensional box potential

To provide insight into the spin dynamics process, we
first restrict ourselves to the simplified one-dimensional box
potential introduced above. This allows for a qualitative
analysis of the spatial structure along the principle axis of
an elliptical trap.

The spin excitation modes in the one-dimensional box
potential can be analyzed by evaluating the single-particle
eigenfunctions of the effective Hamiltonian.

In this case the well-known solutions are plane waves with
a discrete wave vector kn = nπ/(2 rTF) of the form

ϕn(x) = 1√
rTF

sin

(
knx + n

π

2

)
(7)

with eigenenergies εn = h̄2k2
n/(2m). The density distribution

hence consists of a chain of neighboring maxima, and the
number of these maxima is given by n, as shown in Fig. 5.

To analyze the stability of the excitation modes in
this system, we expand the Hamiltonian using δψ̂mF

=∑
n ân,mF

ϕn(x) to obtain Ĥ = ∑
n Ĥn, with

Ĥn = (εn + q)
∑
mF

â†
n,mF

ân,mF
+ �n(â†

n,1â
†
n,−1 + ân,1ân,−1).

(8)

Here, �n = ∫
ϕ∗

n
2(x)�(x)dx represents the spin dynamics rate

to a single mode n. Thus the Heisenberg equation for each
mode ih̄ d

dt
â

(†)
n,mF

= [â(†)
n,mF

,Ĥ ] can be represented by

ih̄
d

dt

(
ân,1

â
†
n,−1

)
=

(
εn + q �n

−�n −εn − q

)(
ân,1

â
†
n,−1

)
, (9)

and the time evolution of the system can be obtained from the
eigenvalues ξn = √

(εn + q)2 − �2
n of this matrix. Excitation

modes with real eigenvalues are stable, whereas imaginary
eigenvalues lead to an exponential amplification of the popula-
tion of the mode ϕn. A particularly interesting behavior arises
when the eigenenergy of the effective Hamiltonian is equal
to the quadratic Zeeman energy εn + q = 0. In this case the
imaginary eigenvalue ξn = i|�n| of (8) reaches a maximum
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FIG. 6. (Color online) Orientation of the spin excitation mode
in a rotated elliptical trap. (a) Time-of-flight images of the spatial
distribution of atoms in the state |2,1〉 as a function of the power Px

in a configuration with a deliberate misalignment between the two
trapping beams. (b) The angles of the distributions (orange squares)
are shown in comparison with the angle of the strongest trap axis
obtained from a trap frequency measurement (blue dots, solid line).

and the corresponding mode is maximally unstable, causing
resonances in spin dynamics [23].

Figure 6 displays the density distribution of a spin excitation
mode for different orientations of an elliptical trap. The
agreement between the orientation of the trap and the spin
excitation mode clearly shows that the observed spatial
distributions are indeed a feature of the trapping potential.
The agreement between the predicted and the observed shape
of the distribution along the principal axes also verifies that
the one-dimensional description of the system is valid. Note,
however, that this one-dimensional description naturally fails
to account for the two-dimensional shape of the excitation
modes and their dependence on the trap configuration.

D. Spinor dynamics in the cylindrical trap

The analysis presented above can be extended to the
physically richer case of the cylindrical trap configuration.
For a two-dimensional cylindrical box, the single-particle
eigenfunctions in the coordinates r (radial distance) and γ

(azimuthal angle) are given by

ϕn,l(r,γ ) = 1√
πrTFJl+1(βn,l)

Jl

(
βn,l

r

rTF

)
eilγ , (10)

with corresponding eigenenergies εn,l = h̄2β2
n,l/2mr2

TF. Here,
Jl are Bessel functions of the first kind and βn,l is the nth zero
of Jl . The modes can be identified by the quantum numbers n

for the radial excitations and l for the angular momentum along
the y direction. Figure 7(a) shows plots of the corresponding
single-particle density distributions.

Similar to the previous case, the Hamiltonian can be ex-
panded in these eigenfunctions δψ̂mF

(�r) = ∑
n,l ân,l,mF

ϕn,l(�r).
One obtains Ĥ = ∑

n,l Ĥn,l , where Ĥn,l is given by

Ĥn,l = (εn,l + q)
∑
mF

â
†
n,l,mF

ân,l,mF

+�n,l(â
†
n,l,1â

†
n,−l,−1 + ân,l,1ân,−l,−1), (11)

where �n,l = ∫
ϕ∗

n,l(�r)ϕ∗
n,−l(�r)�(�r)d�r . Note that the counter-

rotating modes Hn,l and Hn,−l are energetically degenerate
since εn,l = εn,−l .

The Heisenberg equation for the creation and annihilation
operators is analogous to Eq. (9) and excitation modes with

053624-5



M. SCHERER et al. PHYSICAL REVIEW A 88, 053624 (2013)

(a)

(b)
-1

+1

n,l= 1,0 1, 1± 2,0 2, 1± 3,0 3, 1±

FIG. 7. Density distributions of spin excitation modes in a
cylindrical trap. (a) Expected profiles in a cylindrical box potential
according to Eq. (10). (b) Images of experimental density profiles
recorded in time of flight, averaged over 30 realizations.

real eigenvalues ξn,l =
√

(εn,l + q)2 − �2
n,l are stable, whereas

imaginary eigenvalues lead to an exponential amplification
of the population in the mode ϕn,l with the instability rate
Im(ξn,l)/h.

1. Magnetic field position of spin excitation modes

Figure 8 compares the observed spin dynamics resonances
in the cylindrical trap with the theoretically expected energies
of maximal instability in a cylindrical box potential. The
experiment is conducted as outlined in Sec. II D with a
spin dynamics time of 17 ms. Several resonances in the
transfer efficiency are clearly visible, indicating maxima of
the instability rate. To identify the quantum numbers of
the corresponding excitation modes, only the Thomas-Fermi
radius was varied in the calculation of the eigenenergies
εn,l to fit the maxima in Fig. 8(a) to the observed maxima
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(b)

FIG. 8. (Color online) Spin dynamics rate in a cylindrical trap
as a function of the quadratic Zeeman energy. (a) Instability rate
of the strongest modes calculated for the cylindrical box potential.
(b) Measured number of atoms in the states |2, ± 1〉 after a spin
dynamics time of 17 ms. The orange line is a guide to the eye. The
vertical gray bars indicate the maxima of the instability rate with the
corresponding quantum numbers (n,l).

of the instability rate in Fig. 8(b). The resulting value of
rTF = 3.9 μm, is in very good agreement with the value of
3.7 μm obtained from a mean-field calculation. The small
discrepancy probably reflects the assumption of infinitely
high box walls. The spatial distribution observed on these
resonances is shown in Fig. 7(b), clearly showing that the
expected shape of the excitation modes can be observed in the
expanded density profiles after TOF absorption imaging.

The images shown in Fig. 7 also allow for a visual
identification of the quantum numbers. The number of maxima
of the density along the radius corresponds to the quantum
number n. The second quantum number l indicates the angular
momentum of the modes. Modes with l = ±1 form a vortex
which results in a density minimum at the center of the clouds.

This analysis clarifies the origin of the spin excitation
resonances in the cylindrical trap. The good agreement shown
in Figs. 7 and 8 verifies that a two-dimensional analysis in
a simple cylindrical box potential is justified and allows for
the identification of the observed excitation modes. However,
the model does not give correct instability rates, primarily
because it does not include the mode overlap between the
BEC and the spin excitation modes [22].

2. Analysis of spin excitation mode contribution

The method to identify the quantum numbers presented
above is applicable when the modes are well separated. This
is the case close to the maxima of the observed spin dynamics
rate, but it fails when a superposition of several modes is
excited. Therefore a second method to analyze the density
profiles was used, which allows us to identify the contributing
excitation modes at each energy. This is achieved by fitting
a superposition of the density distributions of the excitation
modes (n = 1 to n = 3) to the observed averaged density
profiles. Each fit reveals the contributions of the individual
excitation modes. The results are shown in Fig. 9.

Each resonance clearly shows a strong contribution of the
appropriate spatial mode. On the first resonance at ≈ −22 Hz,
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FIG. 9. (Color online) Contribution of the excitation modes to
the fraction of atoms transferred to the state |2,±1〉. The black
dots indicate the experimental data shown in Fig. 8. The weights
of the contributing excitation modes according to our fit are shown as
triangles and diamonds (see legend). The vertical gray bars show the
result of the analysis in Sec. III D1. All lines are guides to the eye.

053624-6



SPONTANEOUS SYMMETRY BREAKING IN SPINOR BOSE- . . . PHYSICAL REVIEW A 88, 053624 (2013)

the (n = 1,l = 0) ≡ (1,0) contribution is the strongest. The
second resonance at ≈ −50 Hz is a superposition of the (1,0)
and (1, ± 1) modes, while the third resonance at ≈ −120 Hz
is dominated by the (2,0) mode. Similarly, the fourth and
fifth resonance at ≈ −180 Hz and ≈ −280 Hz have strong
contributions of the associated (2, ± 1) and (3,0) modes. The
difference between the ideal Bessel modes and the experimen-
tally measured distributions lead to spurious contributions of
other (lower-lying) spatial modes. In addition, imperfections of
the imaging system and the low signal-to-noise ratio add to the
weight of these spurious contributions. Since these spurious
contributions are stronger for larger signals, they appear as
extra peaks in addition to the theoretically expected ones.
To overcome these problems, pattern recognition algorithms
[34] or image-processing techniques [35] might be employed.
Nonetheless, our simple model correctly identifies the domi-
nant spatial structure at the resonance positions, showing that
the effective box potential approach is well justified.

IV. SYMMETRY BREAKING IN SPINOR BEC

The spin excitation modes in a cylindrical potential allow
for the observation of a spatial- and a spin-symmetry-breaking
process [18]. Both of these processes can be analyzed within
the framework of the cylindrical box potential presented above.

Let us consider the case of a spin excitation mode with
nonvanishing angular momentum (l = 0). In this case, two
degenerate modes are present in the system, one mode
with positive angular momentum l = +|l| rotating clockwise
(vortex) and one with negative angular momentum l = −|l|
rotating counterclockwise (antivortex). If just one mode is pop-
ulated by spinor dynamics, the resulting density distribution
will be cylindrically symmetric. However, if superpositions
of vortex and antivortex modes are populated, they interfere
and form an azimuthal standing wave which is no longer
cylindrically symmetric and shows a clear orientation.

Figure 10(a) shows calculated density distributions of such
superposition states based on Eq. (10) for excitation modes
with quantum numbers (2, ± 1) and (3, ± 1). These distri-
butions assume equal populations of the vortex and antivortex
modes and a fixed overall phase φn,l,mF

was randomly assigned

(a)

(b)
-1

+1

n,l= 1,0 1, 1± 2,0 2, 1± 3,0 3, 1±

FIG. 10. Density distributions of individual spin excitations in a
cylindrical trap. (a) Calculated density distributions for a superposi-
tion of the vortex-antivortex modes (n,±1) (where applicable). In the
case of the mode (1,±1), an admixture of the neighboring mode (1,0)
was included. (b) Experimental absorption images of individual spin
excitations.

to each mode.1 Since the pattern is given by

|〈δψ̂mF
(r,γ )〉|2 =

∣∣∣∣∣ ∑
l=±|l|

〈ân,l,mF
〉ϕn,l(r,γ )

∣∣∣∣∣
2

∝ 1 + (−1)|l| cos(φn,l,mF
− φn,−l,mF

+ 2|l|γ ),

(12)

the spatial orientation is determined by the difference between
the overall phases, and the term 2|l|γ corresponds to the
azimuthal standing wave.

In the experimental case, the excitation modes for n > 1
are populated due to the parametric amplification of vacuum
fluctuations [22]. Therefore the phases φn,l,mF

are chosen
arbitrarily by the system, and hence the angle of the density
distribution is expected to be different for each experimental
realization, corresponding to spontaneous spatial symmetry
breaking. Figure 10(b) shows images of individual experi-
mental realizations to illustrate this behavior.

Besides the breaking of the spatial symmetry, which occurs
in each mF state individually, the local spin symmetry can
also be broken. Since all mF components are confined by the
same trap, a difference in the orientation of the two clouds
in the states |2, ± 1〉 corresponds to a spatially varying local
longitudinal spin orientation. This case can be observed on the
mode (2, ± 1), as shown in Fig. 10(b). It shows that the phases
φn,l,mF

must differ in the states |2, ± 1〉, and hence an analysis
of these phase correlations is required.

A. Theoretical symmetry-breaking analysis

To investigate the symmetry-breaking process, an analysis
of the phase correlations in the states |2, ± 1〉 is required.
We first calculate the states which are generated on the
unstable modes (ξn,l = i|ξn,l|) in the two-mode Fock basis
|nmF =−1〉|nmF =+1〉 ≡ |n−1,n+1〉F , where n±1 is the number of
atoms in the Zeeman states. These states allow for a calculation
of the phase states as defined in Ref. [36], which provide the
phase correlations of interest.

The time evolution operator of the spin dynamics process
is given by

Û (t) ≡ exp(−iĤn,l t/h̄).

On a spin excitation resonance (εn,l + q = 0), this operator
corresponds to the well-known two-mode squeezing operator
with a squeezing parameter ζ ≡ �n,l t

h̄
e−iπ/2 and can thus be

written as

ÛR(t) = exp[ζ (â†
n,l,1â

†
n,−l,−1 + ân,l,1ân,−l,−1)].

To obtain an explicit form of the time evolution operator
Û (t), we solve the Heisenberg equation by diagonalizing
the Hamiltonian Ĥn,l . This is achieved by introducing the

1Note that an additional index mF indicates that the phase can differ
for mF states.
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quadratures(
X̂

(1)
n,l,mF

X̂
(2)
n,−l,−mF

)
︸ ︷︷ ︸

≡ �̂X

= 1√
2 sin(2θn,l)

(
eiθn,l e−iθn,l

e−iθn,l eiθn,l

)
︸ ︷︷ ︸

≡A

(
ân,l,1

â
†
n,−l,−1

)
︸ ︷︷ ︸

≡�̂a

,

where cos 2θn,l = (εn,|l| + q)/�n,l .
Thus the Hamiltonian (11) can be rewritten in the form

Ĥn,l = |ξn,l|
2

∑
mF ,l

[
X̂

(1)
n,l,mF

X̂
(2)
n,l,mF

+ X̂
(2)
n,l,mF

X̂
(1)
n,l,mF

]
.

The Heisenberg equations for the quadratures are
ih̄ d

dt
X̂

(1,2)
n,l,mF

= [X(1,2)
n,l,mF

Ĥn,l] = iξn,lX
(1,2)
n,l,mF

and their time evo-
lution is(

X̂
(1)
n,l,mF

(t)

X̂
(2)
n,−l,−mF

(t)

)
=

(
eξn,l t 0

0 e−ξn,l t

)
︸ ︷︷ ︸

≡T

(
X̂

(1)
n,l,mF

(0)

X̂
(2)
n,−l,−mF

(0)

)
.

(13)

Based on these solutions the time evolution of the creation and
annihilation operators are found by using the relation �̂a(t) =
A−1T A�̂a(0) ≡ Ûn,l(t)�̂a(0):

Ûn,l(t) =
(

Un,l Ũn,l

Ũ ∗
n,l U ∗

n,l

)
, (14)

where

Un,l = −i

sin(2θn,l)
sinh

(
ξn,l t

h̄
+ 2θn,l

)
, (15)

Ũn,l = −i

sin(2θn,l)
sinh

(
ξn,l t

h̄

)
. (16)

To obtain the state |ζ 〉 = Ûn,l(t) |0,0〉F generated by paramet-
ric amplification of the two-mode vacuum state, we use the
fact that the vacuum state is an eigenstate of the annihilation
operator with eigenvalue zero ân,l,mF

(t) |0,0〉F = 0. By multi-
plying this equation with the time evolution operator and by
using its unitarity, we obtain the eigenvalue equation

Ûn,l(t)ân,l,mF
Û

†
n,l(t)Ûn,l(t) |0,0〉F

= [Un,l(−t)ân,l,mF
(0) + Ũn,l(−t)â†

n,−l,−mF
(0)]|ζ 〉 = 0.

Expanding the state in terms of two-mode Fock states |ζ 〉 =∑
k,k ck|k,k〉F [37], we find

|ζ 〉 = c0

∑
k

(
− Ũn,l(−t)

Un,l(−t)

)k

|k,k〉F .

In this equation, the sum adds states with exactly the same
number of particles in the two modes, so-called twin-Fock
states. This results in an equal number of atoms in the two
different spin states in every realization. The coefficient c0 is
obtained from the normalization condition. If we assume that
the system is on one of the resonances (εn,l + q = 0), with
negligible contribution from other resonances, the state has
the form

|ζ 〉 = 1

cosh(ξn,l t/h̄)

∑
k

(−i)k tanhk

(
ξn,l t

h̄

)
|k,k〉F . (17)

This exactly corresponds to the two-mode squeezed vacuum
state with squeezed and antisqueezed two-mode quadratures
and equal particle numbers.

In the context of symmetry breaking, our main interest are
the phase correlations between the modes in the two states.
These correlations were analyzed in Ref. [36] for the state
given in Eq. (17). It was shown that the expectation value of
the phase sum is constant 〈φp + φq〉 = −π/2 and that its vari-
ance is given by �(φp + φq) = π2

3 + 4 dilog[1 + tanh( ξn,l t

h̄
)],

where dilog[] is the dilogarithm function. The variance hence
tends to zero, limt→∞ �(φp + φq) = 0. Thus the phase sum
of the two modes is squeezed with increasing time.

These results allow for an interpretation of the spatial
symmetry breaking in terms of the squeezing of the phase
sum. Let us initially assume that only two degenerate vortex
and antivortex modes, e.g., the modes (2,±1) are populated by
spin dynamics. In this case, one obtains a twofold two-mode
squeezing, where the two phase sums are equal. The phase
sums of the vortex mode of the state |2,1〉 and of the
antivortex mode in the state |2,−1〉 are squeezed 〈φn,l,1 +
φn,−l,−1〉 = −π/2 and vice versa 〈φn,−l,1 + φn,l,−1〉 = −π/2.
Hence it follows for large squeezing factors |ζ | that the phase
differences in the states |2,±1〉 are equal, φn,l,mF

− φn,−l,mF
=

φn,l,−mF
− φn,−l,−mF

. Therefore the spatial orientation of the
density distributions in both states is equal [see Eq. (12)]
and a breaking of the spatial symmetry is expected, but not
a breaking of the longitudinal spin symmetry.

Besides the resonance, the squeezing factor |ζ | and thus the
phase sum correlation gets smaller and the phase differences
in the states |2,±1〉 are not necessarily the same. Hence the
probability of observing symmetry breaking in the local lon-
gitudinal spin increases due to the different spatial orientation
of the density distributions of the two clouds. Thus local spin
symmetry is only observed if the squeezing factor is high
enough.

B. Experimental analysis of symmetry breaking
on the mode (2,±1)

The most striking experimental results were obtained on
the resonance (2,±1). While the distribution is symmetric
on the averaged images in Fig. 7, the distribution observed
in individual experimental realizations [Fig. 10(b)] clearly
shows both spatial and spin symmetry breaking. Similarly,
it is possible to observe breaking of both symmetries on the
resonance (3,±1), but the signal-to-noise ratio is typically
insufficient for a quantitative analysis.

We also observe both types of symmetry breaking on the
resonance (1,±1), as shown in Fig. 10. However, in this
case the density distributions are due to superpositions of
several modes with and without angular momentum, since
the instability rates of neighboring modes (1,0) and (2,0) are
large. This is confirmed by the fact that the shape of the density
distribution on this resonance is not symmetric in the averaged
images in Fig. 7. We therefore conclude that the symmetry
breaking on this resonance is classical, caused by experimental
imperfections such as magnetic field gradients.

Within the following quantitative analysis we therefore
focus on the symmetry breaking of the resonance (2,±1).
Within this analysis the orientations of the individual clouds

053624-8



SPONTANEOUS SYMMETRY BREAKING IN SPINOR BOSE- . . . PHYSICAL REVIEW A 88, 053624 (2013)

+1

-1

-

-

=

=

(a) (b) (c)

FIG. 11. (Color online) Measurement of the orientation of the
density distributions. (a) The measured density distributions are
shown together with the resulting eigenvectors of the quadrupole
tensor. The orientation of the biggest eigenvector (orange arrow)
corresponds to the angle of the density distribution. (b) Result of
fits to the measured distributions using an equal superposition of
the modes (2,±1). (c) Absolute value of the difference between the
measured and the fitted density distributions.

and their distribution have to be determined. For this purpose
two independent methods are used and only the images where
both methods agree within an error interval are used. This
procedure allows for the exclusion of images, where the
intrinsic number of transferred atoms is too small to obtain
its orientation.

The first method fits the density distribution expected for
a superposition of the vortex and antivortex modes to each
experimental density distribution [see Fig. 11(b)]. The fit
directly yields the distribution’s orientation relative to the
fixed camera axis. In the second method, we calculate the
two-dimensional quadrupole tensor for each image

Qi,j =
∑

k

nk[3(�rk)i(�rk)j − δi,j �rk], (18)

where i,j ∈ {x,y} represents the two spatial dimensions and
we sum over all pixels of the image. The atomic densities on
the pixels are nk and the position vectors are rk , where the
origin is chosen at the center of mass in each individual cloud.
The eigenvectors of this tensor give the principal axes of the
density profile [see Fig. 11(a)]. For sufficient data quality, the
calculated orientation should be the same as obtained from
the fitting method.

Figure 12 shows the correlation between the angles obtained
by the two methods. The difference of the angles has a standard
deviation of 15 deg. For the analysis of the distribution, only
the images where both methods agree within 40 deg were taken
into account, corresponding to 78% of the measurements. We
have verified that the experimental results were stable under
variation of this interval.

To measure the varying degree of spatial and spin symmetry
breaking, the orientations of the density distributions in the
states |2,±1〉 were recorded at different magnetic fields around
the resonance (2,±1). Figure 13 shows the distribution of these
orientations for each state and their difference for six different
magnetic fields.

Since no significant preferred orientation is observed in the
spatial distributions of the individual clouds, the cylindrical
symmetry is indeed broken spontaneously. This also confirms
that the symmetry breaking is not induced by the remaining
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FIG. 12. (Color online) Comparison of the two methods to deter-
mine the orientation of the density distributions. Only experimental
results where both methods agree within 40 deg (black dots) were
used for further analysis.

asymmetry of the trapping potential, by a spurious production
of seed atoms, or by magnetic field gradients.

Moreover, the distributions of the relative angle between
the two clouds reveal the second symmetry-breaking effect.
The distribution is peaked at around 0 deg for all magnetic
fields, showing that the two angles are correlated as expected
by theory. At a field of 1.78 G, the width of the distribution
is smallest, matching the resolution of the applied angle
measurement. In this case the local spin of the system remains
0, indicating that the squeezing parameter and thus the phase-
sum squeezing of the degenerate vortex and antivortex modes
is maximal.

At higher or lower magnetic fields, however, the squeezing
parameter decreases and thus differing orientations in the
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FIG. 13. (Color online) Orientation of individual density distribu-
tions recorded in the vicinity of the mode (2,±1). (a), (b) Distribution
of angles for the states |2,1〉 and |2,−1〉. (c) Distribution of the
difference between the angles of orientation.
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FIG. 14. (Color online) Visualization of the doubly broken sym-
metry. (a, b) Spin density distribution of the individual components
after time-of-flight imaging. (c) Resulting spin pattern obtained by
subtracting the distributions.

states |2,±1〉 become more probable and the distributions
broaden. In this case, both the spatial symmetry and the
local longitudinal spin symmetry are broken. Figure 14
explicitly shows the doubly broken symmetry by subtracting
the normalized spin density distributions in the states |2,±1〉
after TOF. This leads to an intricate spin pattern shown in
Fig. 14(c) that reflects the spin pattern in the trap before the
TOF imaging sequence. The local spin clearly varies over the
cloud and thus the initial homogeneous spin distribution is
spontaneously broken.

V. CONCLUSION

In summary, we have presented a strikingly simple analyt-
ical model for the theoretical analysis of spin dynamics and
symmetry breaking in a spinor condensate. This allows us
to obtain an excellent intuitive understanding of the process
and provides good quantitative agreement with experimental
results.

A detailed description of the experimental techniques used
to prepare, investigate, and detect spinor BECs is given. This
justifies a model which approximates the effective trapping
potential for the atoms produced in the states |2,±1〉 with a
cylindrical box potential. Within this potential the observed
shape of the spin excitations and their resonance positions
can easily be understood. This provides the basis for an
understanding of the spontaneous symmetry breaking of the
density distributions and of the longitudinal spin orientation.
Specifically, the superposition of vortex-antivortex modes with
opposite angular momentum and quantum fluctuations of the
relative phases lead to the symmetry-breaking processes.

Our results show that spinor gases constitute an excep-
tionally suitable system for the detailed analysis of symmetry
breaking and its close connection to multimode squeezing
during parametric amplification. This allows for applications
of the process to produce correlated quantum states for atom
interferometry below the shot-noise limit [38,39].
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