61 research outputs found

    Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models

    Full text link
    [EN] Access to the small bowel by means of an enteroscope is difficult, even using current devices such as single-balloon or double-balloon enteroscopes. Exploration time and patient discomfort are the main drawbacks. The prototype 'Endoworm' analysed in this paper is based on a pneumatic translation system that, gripping the bowel, enables the endoscope to move forward while the bowel slides back over its most proximal part. The grip capacity is related to the pressure inside the balloon, which depends on the insufflate volume of air. Different materials were used as in vitro and ex vivo models: rigid polymethyl methacrylate, flexible silicone, polyester urethane and ex vivo pig small bowel. On measuring the pressure-volume relationship, we found that it depended on the elastic properties of the lumen and that the frictional force depended on the air pressure inside the balloons and the lumen's elastic properties. In the presence of a lubricant, the grip on the simulated intestinal lumens was drastically reduced, as was the influence of the lumen's properties. This paper focuses on the Endoworm's ability to grip the bowel, which is crucial to achieving effective endoscope forward advance and bowel foldingThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was funded by the Spanish Ministry of Economy and Competitiveness through Project (PI18/01365) and by the UPV/IIS LA Fe through the (Endoworm 3.0) Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development FundTobella, J.; Pons-Beltrán, V.; Santonja, A.; Sánchez-Diaz, C.; Campillo Fernandez, AJ.; Vidaurre, A. (2020). Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 234(5):1-10. https://doi.org/10.1177/09544119209014141102345Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature, 405(6785), 417-417. doi:10.1038/35013140Yamamoto, H., Sekine, Y., Sato, Y., Higashizawa, T., Miyata, T., Iino, S., … Sugano, K. (2001). Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointestinal Endoscopy, 53(2), 216-220. doi:10.1067/mge.2001.112181Arnott, I. D. R., & Lo, S. K. (2004). REVIEW: The Clinical Utility of Wireless Capsule Endoscopy. Digestive Diseases and Sciences, 49(6), 893-901. doi:10.1023/b:ddas.0000034545.58486.e6Hosoe, N., Takabayashi, K., Ogata, H., & Kanai, T. (2019). Capsule endoscopy for small‐intestinal disorders: Current status. Digestive Endoscopy, 31(5), 498-507. doi:10.1111/den.13346Fukumoto, A., Tanaka, S., Shishido, T., Takemura, Y., Oka, S., & Chayama, K. (2009). Comparison of detectability of small-bowel lesions between capsule endoscopy and double-balloon endoscopy for patients with suspected small-bowel disease. Gastrointestinal Endoscopy, 69(4), 857-865. doi:10.1016/j.gie.2008.06.007Akerman, P. A., Agrawal, D., Chen, W., Cantero, D., Avila, J., & Pangtay, J. (2009). Spiral enteroscopy: a novel method of enteroscopy by using the Endo-Ease Discovery SB overtube and a pediatric colonoscope. Gastrointestinal Endoscopy, 69(2), 327-332. doi:10.1016/j.gie.2008.07.042Moreels, T. G. (2017). Update in enteroscopy: New devices and new indications. Digestive Endoscopy, 30(2), 174-181. doi:10.1111/den.12920Pasha, S. F. (2012). Diagnostic yield of deep enteroscopy techniques for small-bowel bleeding and tumors. Techniques in Gastrointestinal Endoscopy, 14(2), 100-105. doi:10.1016/j.tgie.2012.02.001Lenz, P., & Domagk, D. (2012). Double- vs. single-balloon vs. spiral enteroscopy. Best Practice & Research Clinical Gastroenterology, 26(3), 303-313. doi:10.1016/j.bpg.2012.01.021Baniya, R., Upadhaya, S., Subedi, S. C., Khan, J., Sharma, P., Mohammed, T. S., … Jamil, L. H. (2017). Balloon enteroscopy versus spiral enteroscopy for small-bowel disorders: a systematic review and meta-analysis. Gastrointestinal Endoscopy, 86(6), 997-1005. doi:10.1016/j.gie.2017.06.015Menciassi, A., & Dario, P. (2003). Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2287-2298. doi:10.1098/rsta.2003.1255Zarrouk, D., Sharf, I., & Shoham, M. (2011). Analysis of Wormlike Robotic Locomotion on Compliant Surfaces. IEEE Transactions on Biomedical Engineering, 58(2), 301-309. doi:10.1109/tbme.2010.2066274Poon, C. C. Y., Leung, B., Chan, C. K. W., Lau, J. Y. W., & Chiu, P. W. Y. (2015). Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues. Surgical Endoscopy, 30(2), 772-778. doi:10.1007/s00464-015-4224-8Kassim, I., Phee, L., Ng, W. S., Feng Gong, Dario, P., & Mosse, C. A. (2006). Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine, 25(3), 49-56. doi:10.1109/memb.2006.1636351Kim, Y.-T., & Kim, D.-E. (2010). Novel Propelling Mechanisms Based on Frictional Interaction for Endoscope Robot. Tribology Transactions, 53(2), 203-211. doi:10.1080/10402000903125337Massalou, D., Masson, C., Foti, P., Afquir, S., Baqué, P., Berdah, S.-V., & Bège, T. (2016). Dynamic biomechanical characterization of colon tissue according to anatomical factors. Journal of Biomechanics, 49(16), 3861-3867. doi:10.1016/j.jbiomech.2016.10.023Egorov, V. I., Schastlivtsev, I. V., Prut, E. V., Baranov, A. O., & Turusov, R. A. (2002). Mechanical properties of the human gastrointestinal tract. Journal of Biomechanics, 35(10), 1417-1425. doi:10.1016/s0021-9290(02)00084-2Hoeg, H. D., Slatkin, A. B., Burdick, J. W., & Grundfest, W. S. (s. f.). Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). doi:10.1109/robot.2000.844825Terry, B. S., Passernig, A. C., Hill, M. L., Schoen, J. A., & Rentschler, M. E. (2012). Small intestine mucosal adhesivity to in vivo capsule robot materials. Journal of the Mechanical Behavior of Biomedical Materials, 15, 24-32. doi:10.1016/j.jmbbm.2012.06.018Kim, J.-S., Sung, I.-H., Kim, Y.-T., Kwon, E.-Y., Kim, D.-E., & Jang, Y. H. (2006). Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribology Letters, 22(2), 143-149. doi:10.1007/s11249-006-9073-0Lyle, A. B., Luftig, J. T., & Rentschler, M. E. (2013). A tribological investigation of the small bowel lumen surface. Tribology International, 62, 171-176. doi:10.1016/j.triboint.2012.11.018De Simone, A., & Luongo, A. (2013). Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates. International Journal of Solids and Structures, 50(14-15), 2213-2223. doi:10.1016/j.ijsolstr.2013.03.028Sliker, L. J., Ciuti, G., Rentschler, M. E., & Menciassi, A. (2016). Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribology International, 102, 472-484. doi:10.1016/j.triboint.2016.06.003Zhang, C., Liu, H., & Li, H. (2014). Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot. Tribology International, 70, 11-17. doi:10.1016/j.triboint.2013.09.019Zhang, C., Liu, H., & Li, H. (2013). Modeling of Frictional Resistance of a Capsule Robot Moving in the Intestine at a Constant Velocity. Tribology Letters, 53(1), 71-78. doi:10.1007/s11249-013-0244-5Zhang, C., Liu, H., Tan, R., & Li, H. (2012). Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine. Tribology Letters, 47(2), 295-301. doi:10.1007/s11249-012-9980-1Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y., & Cho, J.-H. (2011). Small intestinal model for electrically propelled capsule endoscopy. BioMedical Engineering OnLine, 10(1), 108. doi:10.1186/1475-925x-10-108Sliker, L. J., & Rentschler, M. E. (2012). The Design and Characterization of a Testing Platform for Quantitative Evaluation of Tread Performance on Multiple Biological Substrates. IEEE Transactions on Biomedical Engineering, 59(9), 2524-2530. doi:10.1109/tbme.2012.2205688Sánchez-Diaz, C., Senent-Cardona, E., Pons-Beltran, V., Santonja-Gimeno, A., & Vidaurre, A. (2018). Endoworm: A new semi-autonomous enteroscopy device. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(11), 1137-1143. doi:10.1177/0954411918806330Persson, B. N. J., & Spencer, N. D. (1999). Sliding Friction: Physical Principles and Applications. Physics Today, 52(1), 66-68. doi:10.1063/1.882557Gerson, L. B., Flodin, J. T., & Miyabayashi, K. (2008). Balloon-assisted enteroscopy: technology and troubleshooting. Gastrointestinal Endoscopy, 68(6), 1158-1167. doi:10.1016/j.gie.2008.08.012Glozman, D., Hassidov, N., Senesh, M., & Shoham, M. (2010). A Self-Propelled Inflatable Earthworm-Like Endoscope Actuated by Single Supply Line. IEEE Transactions on Biomedical Engineering, 57(6), 1264-1272. doi:10.1109/tbme.2010.2040617Baek, N.-K., Sung, I.-H., & Kim, D.-E. (2004). Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218(3), 193-201. doi:10.1243/095441104323118914Kwon, J., Cheung, E., Park, S., & Sitti, M. (2006). Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomedical Materials, 1(4), 216-220. doi:10.1088/1748-6041/1/4/007Kim, B., Lee, S., Park, J. H., & Park, J.-O. (2005). Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs). IEEE/ASME Transactions on Mechatronics, 10(1), 77-86. doi:10.1109/tmech.2004.842222Terry, B. S., Lyle, A. B., Schoen, J. A., & Rentschler, M. E. (2011). Preliminary Mechanical Characterization of the Small Bowel for In Vivo Robotic Mobility. Journal of Biomechanical Engineering, 133(9). doi:10.1115/1.400516

    Classification Predictive Model for Air Leak Detection in Endoworm Enteroscopy System

    Full text link
    [EN] Current enteroscopy techniques present complications that are intended to be improved with the development of a new semi-automatic device called Endoworm. It consists of two different types of inflatable cavities. For its correct operation, it is essential to detect in real time if the inflatable cavities are malfunctioning (presence of air leakage). Two classification predictive models were obtained, one for each cavity typology, which must discern between the ¿Right¿ or ¿Leak¿ states. The cavity pressure signals were digitally processed, from which a set of features were extracted and selected. The predictive models were obtained from the features, and a prior classification of the signals between the two possible states was used as input to different su-pervised machine learning algorithms. The accuracy obtained from the classification predictive model for cavities of the balloon-type was 99.62%, while that of the bellows-type was 100%, repre-senting an encouraging result. Once the models are validated with data generated in animal model tests and subsequently in exploratory clinical tests, their incorporation in the software device will ensure patient safety during small bowel exploration.The study was funded by the Spanish Ministry of Economy and Competitiveness through Project (PI18/01365) and by the UPV/IIS LA Fe through the (Endoworm 3.0) Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund.Zazo-Manzaneque, R.; Pons-Beltrán, V.; Vidaurre, A.; Santonja, A.; Sánchez-Diaz, C. (2022). Classification Predictive Model for Air Leak Detection in Endoworm Enteroscopy System. Sensors. 22(14):1-18. https://doi.org/10.3390/s22145211118221

    Endoworm: A new semi-autonomous enteroscopy device

    Full text link
    [EN] Using enteroscopes with therapeutic capacity to explore the small intestine entails certain limitations, including long exploration times, patient discomfort, the need for sedation, a high percentage of incomplete explorations and a long learning curve. This article describes the advances and setbacks encountered in designing the new Endoworm enteroscopy system, a semi-autonomous device consisting of a control unit and three cavities that inflate and deflate in such a way that the bowel retracts over the endoscope. The system can be adapted to any commercial enteroscope. Endoworm was tested in different intestine models: a polymethyl methacrylate rigid tube, an in vitro polyester urethane model, an ex vivo pig model and an in vivo animal model. The general behavior of the prototype was evaluated by experienced medical personnel. The mean distance covered through the lumen was measured in each cycle. The system was found to have excellent performance in the rigid tube and in the in vitro model. The ex vivo tests showed that the behavior depended largely on the mechanical properties of the lumen, while the in vivo experiments suggest that the device will require further modifications to improve its performance.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through Project PI12/01000 and also from UPV/IIS LA Fe through the Endoworm 3.0 Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program and CIBER Actions, and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development Fund.Sánchez-Diaz, C.; Senent-Cardona, E.; Pons, V.; Santonja Gimeno, AV.; Vidaurre Garayo, AJ. (2018). Endoworm: A new semi-autonomous enteroscopy device. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 232(11):1137-1143. https://doi.org/10.1177/0954411918806330S113711432321

    ABLE: Automated Brain Lines Extraction Based on Laplacian Surface Collapse.

    Get PDF
    The archetypical folded shape of the human cortex has been a long-standing topic for neuroscientific research. Nevertheless, the accurate neuroanatomical segmentation of sulci remains a challenge. Part of the problem is the uncertainty of where a sulcus transitions into a gyrus and vice versa. This problem can be avoided by focusing on sulcal fundi and gyral crowns, which represent the topological opposites of cortical folding. We present Automated Brain Lines Extraction (ABLE), a method based on Laplacian surface collapse to reliably segment sulcal fundi and gyral crown lines. ABLE is built to work on standard FreeSurfer outputs and eludes the delineation of anastomotic sulci while maintaining sulcal fundi lines that traverse the regions with the highest depth and curvature. First, it segments the cortex into gyral and sulcal surfaces; then, each surface is spatially filtered. A Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the surfaces. This surface is then used for careful detection of the endpoints of the lines. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the connectivity between the endpoints. The method is validated by comparing ABLE with three other sulcal extraction methods using the Human Connectome Project (HCP) test-retest database to assess the reproducibility of the different tools. The results confirm ABLE as a reliable method for obtaining sulcal lines with an accurate representation of the sulcal topology while ignoring anastomotic branches and the overestimation of the sulcal fundi lines. ABLE is publicly available via https://github.com/HGGM-LIM/ABLE .This work was supported by the project exAScale ProgramIng models for extreme Data procEssing (ASPIDE), that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 801091. This work has received funding from “la Caixa” Foundation under the project code LCF/PR/HR19/52160001. Susanna Carmona funded by Instituto de Salud Carlos III, co-funded by European Social Fund “Investing in your future” (Miguel Servet Type I research contract CP16/00096). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Yasser Alemán-Gómez is supported by the Swiss National Science Foundation (185897) and the National Center of Competence in Research (NCCR) SYNAPSY - The Synaptic Bases of Mental Diseases, funded as well by the Swiss National Science Foundation (51AU40-1257).S

    Ocupações pleistocénicas da margem esquerda do Baixo Minho (Miño/Minho2): objetivos e primeiros resultados de um projeto transfronteiriço

    Get PDF
    As mais antigas investigações arqueológicas no âmbito do Paleolítico da bacia hidrográfica do rio Minho (NW Peninsular) iniciaram-se na primeira metade do século XX. Por esta mesma altura realizaram-se também os primeiros estudos geomorfológicos na região, que permitiram correlacionar artefactos líticos com terraços fluviais.Durante a segunda metade daquele mesmo século, o estudo do Paleolítico ocorreu essencialmente na Galiza, ficando em Portugal reduzido a trabalhos pontuais e geograficamente circunscritos. A partir de 2010 assiste-se, igualmente na Galiza, ao desenvolvimento de um projecto de investigação que possibilitou não só a identificação de novos sítios arqueológicos, como também a sua datação absoluta, remetendo-os para o Plistocénico médio. A elaboração do projecto Miño-Minho, cujos primeiros resultados agora se apresentam, teve como principal objectivo dar continuidade na margem portuguesa a estes trabalhos iniciados no país vizinho.The earliest archaeological research on the Palaeolithic of the Minho River Basin (NW Iberia) took place in the first half of the 20th century. At the same time, geomorphological studies were developed in the region allowing the connection between lithic artefacts and fluvial terraces. In the second half of this century the studies on the Palaeolithic occurred mainly in Galicia, while in Portugal they were short-term and focused on geographically confined areas. From 2010 onwards, also in Galicia, a research project was developed which enabled the detection of new archaeological sites and their absolute dating, assigning them to the Middle Pleistocene. Thedevelopment of the Miño-Minho project, whose first results are now presented, had as its main objective to carry on in the Portuguese bank the research initiated in the neighboring country

    METODOLOGÍA Y FIABILIDAD DE LA MEDICIÓN DEL PERÍMETRO DE MUSLO

    Get PDF
    Hipótesis: Para describir la fiabilidad intra e interexploradora de la medición del perímetro del muslo, en función de la experiencia previa del explorador y la masa muscularde muslo. Para describir la distancia más fiable a la rótula para la medición, así como si es necesario tomar estas mediciones durante la contracción muscular activa y durantela relajación. Para establecerla distancia (en mm), desde donde podemos asegurarnos de que las diferencias obtenidas se deben a modificaciones en los verdaderos perímetros del muslo y no aun error de medición.Antecedentes: el perímetro del muslo es un parámetro fácil y rápido de medir durante la evaluación de la rodilla con el fin de identificar la atrofia muscular y la documentaciónde la asimetría. Ha sido ampliamente utilizada para cuantificar el progreso de rehabilitación después de una cirugía de rodilla y de ciertas patologías. Sin embargo,el procedimiento sistemático de medición del perímetro del muslo y la fiabilidad que no están claramente establecidas en la literatura. Material y método: Se midió el perímetro del muslo a 5, 10 y 15 cm de la rótula a 16 voluntarios (9 deportistas y 7 sedentarios), por 7 exploradores con diferente experiencia. Resultados: El 93% de las mediciones presentaba una fiabilidad intraobservador > 0.90. La medición de la fiabilidad por el coeficiente de correlación no es un índice adecuado, ya que coeficientes elevados presentan un excesivo rango de variación. Conclusión: Las medidas más fiables se obtienen a 10 cm del polo de la rótula. Las mediciones son más fiables en sedentarios que en deportistas y están sujetas al grado de experiencia del explorador
    corecore