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Abstract
The archetypical folded shape of the human cortex has been a long-standing topic for neuroscientific research. Nevertheless, 
the accurate neuroanatomical segmentation of sulci remains a challenge. Part of the problem is the uncertainty of where a 
sulcus transitions into a gyrus and vice versa. This problem can be avoided by focusing on sulcal fundi and gyral crowns, 
which represent the topological opposites of cortical folding. We present Automated Brain Lines Extraction (ABLE), a 
method based on Laplacian surface collapse to reliably segment sulcal fundi and gyral crown lines. ABLE is built to work 
on standard FreeSurfer outputs and eludes the delineation of anastomotic sulci while maintaining sulcal fundi lines that 
traverse the regions with the highest depth and curvature. First, it segments the cortex into gyral and sulcal surfaces; then, 
each surface is spatially filtered. A Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the 
surfaces. This surface is then used for careful detection of the endpoints of the lines. Finally, sulcal fundi and gyral crown 
lines are obtained by eroding the surfaces while preserving the connectivity between the endpoints. The method is validated 
by comparing ABLE with three other sulcal extraction methods using the Human Connectome Project (HCP) test-retest 
database to assess the reproducibility of the different tools. The results confirm ABLE as a reliable method for obtaining 
sulcal lines with an accurate representation of the sulcal topology while ignoring anastomotic branches and the overestima-
tion of the sulcal fundi lines. ABLE is publicly available via https:// github. com/ HGGM- LIM/ ABLE.
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Introduction

The human brain cortex presents a characteristic morphol-
ogy of folds and fissures. During prenatal and early postnatal 
neurodevelopment, the process of folding causes a series of 
sulci and gyri in the cortex. Sulci are defined as the regions 
of the cortex folded inwards, and gyri as the regions folded 
outwards (Welker, 1990). The sulcal regions with high cur-
vature and maximum depth are called sulcal fundi, while the 
gyral regions with minimum depth values are called gyral 
crowns.

Accurate in vivo labeling of sulcal fundi and gyral crowns 
is of interest as accurate fundi/crown labels can be used as 
landmarks for the deformation fields in brain-surface warp-
ing algorithms (Durrleman et al., 2007). Sulcal fundi and 
gyral crowns also tap topological differences in cytoarchi-
tecture (Welker, 1990). As such, precise segmentation of 
fundi/crowns can have important implications for gyral- and 
sulcal-specific research of brain morphogenesis (Van Essen, 
1997; Leroy et al., 2015), morphometry (Aleman-Gomez 
et al., 2013; Pron et al., 2021), the genetics of cortical gyr-
ification (Kippenhan et al., 2005; Pizzagalli et al., 2020; 
Alexander-Bloch et al., 2020), cognition (Im et al., 2011), 
mental illnesses (Janssen et al., 2014) or neurodegenerative 
disorders (Seong et al., 2010; De Guio et al., 2019). Esti- 
mation of sulcal metrics such as length have been widely 
calculated using software such as BrainVISA (Fischer et al., 
2012; Pizzagalli et al., 2020; Aleman-Gomez et al., 2013; 
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Hopkins et al., 2014; Shokouhi et al., 2012; Im et al., 2006), 
although this tool does not delineate the sulcal trajectories.

There is no consensus about the exact location of sul-
cal fundi and gyral crowns, making the evaluation and 
assessment of these extraction methods more complex. In 
addition, the large individual anatomical variability of the 
human cortex further provides a further challenge for a line 
extraction process. Nevertheless, automatic line extraction 
is preferable over manual labeling of sulcal fundi, and gyral 
crown lines as manual labeling is a very time-consuming 
task with a poor inter-rater reliability (Klein and Tourville, 
2012; Caviness et al., 1996). Initially, sulcal fundi and gyral 
crowns delineation methods were based on volume-based 
extraction procedures (Lohmann et al., 1997; Castellano 
et al., 2003; Renault et al., 2000); nowadays, most methods 
use a surface mesh extracted from MRI volumes, and sulcal 
fundi/gyral crowns are defined as lines consisting of con-
nected vertices over the mesh. Accurate extraction of the 
cortical surface mesh is critical for the extraction of sulcal 
fundi/gyral crowns. Mesh inaccuracies translate into errors 
in the derived vertex-wise curvature and depth maps, which 
are essential for line extraction methods. Therefore, the line 
extraction process relies on the correct outcome of tools such 
as FreeSurfer (Dale et al., 1999), BrainSuite (Shattuck et al., 
2000), and BrainVISA’s Morphologist (Fischer et al., 2012) 
which allow for the generation of a cortical surface mesh.

There are different approaches for the delineation of sul-
cal fundi lines from cortical surfaces. Sulcal lines have been 
defined as the shortest path between two points of the same 
sulcal basin. This shortest path can be defined in terms of the 
local cortical surface curvature (Le Troter et al., 2012), or the 
surface convexity (Shattuck et al., 2009). The shortest-path 
approach forces sulcal fundi lines to traverse sulcal regions 
of high curvature or convexity. Other approaches, such as 
skeleton-based methods, provide skeletonized sulcal lines by 
pruning sulcal or fold segmentations through the removal of 
vertices with the lowest curvature (Kao et al., 2007), depth 
(Klein et al., 2017), or distance to the fold boundary (Shi et al., 
2008). The pruning is performed while maintaining the sul-
cal topology and shape. Both approaches present limitations. 
For instance, in the shortest-path delineation method, sulcal 
regions are typically not represented when the sulcus encir-
cles a gyral wall. In addition, the shortest-path and skeleton-
based methods rely on the selection of sulci endpoints, i.e., the 
vertices where a line should start or end, to delineate sulcal 
fundi lines. The definition of sulcal endpoints is challenging 
due to the highly variable geometric patterns on the cortical 
surfaces leading to widely branched sulci, thus making it hard 
to decide whether the branch of a sulcal fundi/gyral crown line 
is principal or anastomotic (Kochunov et al., 2009).

To solve this problem, some methods extract the end-
points directly during the sulcal eroding step (Shi et al., 
2008) or use adaptive thresholding of the Geodesic Path 

Density Maps (GPDM) (Le Troter et al., 2012). In GPDM, 
the probability of belonging to a sulcal fundi line is assigned 
to each vertex on the cortical surface by estimating the 
shortest paths between pairs of vertices in the sulcal basin 
boundary. This probability is then thresholded to obtain 
the sulcal fundi lines. This approach leads to sulcal fundi 
lines traversing the zones with high curvature and depth, but 
inaccurate in terms of sulcal length (Le Troter et al., 2012). 
Furthermore, the obtained lines do not represent the entire 
sulcal topology, especially in bifurcations. The majority of 
currently available methods contain an explicit endpoint 
detection step. For instance, in Mindboggle (Klein et al., 
2017) the endpoints are detected by propagating maximal 
depth tracks from vertices with median depth towards the 
sulcal boundary. In Kao et al. (2007), endpoints are selected 
as the points of the sulcal boundary that are in the extremes 
when doing a principal component analysis on a neighbor-
hood of the point. In Topological Graph Representation for 
Automatic Sulcal Curve Extraction (TRACE) (Lyu et al., 
2018), high curvature sulcal fundi vertices are selected, and 
the endpoints are defined as the points in the extremes of 
that set of vertices. This definition leads to the delineation of 
anastomotic sulci that increase the morphological variability 
and complicate phenotypic analyses (Kochunov et al., 2010).

In general, progress in the field of line extraction may 
have also been hampered by the limited availability of 
source code and a sometimes challenging implementation, 
i.e., difficult to use. This has resulted in few applications 
of line extraction methods as well as complicating evalua-
tions of reproducibility. To the best of our knowledge, only 
Mindboggle (https:// mindb oggle. info/), TRACE (https:// 
github. com/ ilwoo lyu/ Curve Extra ction) and GPDM (https:// 
brain visa. info/ web/) have made their code public and easily 
are available.

This work presents a new method named Automated 
Brain Lines Extraction Based on Laplacian Surface Collapse 
(ABLE) to reliably and automatically segment sulcal fundi 
and gyral crown lines. This algorithm is implemented in 
a publicly available MATLAB toolbox (https:// github. com/ 
HGGM- LIM/ ABLE), and it was developed to work over the 
standard FreeSurfer outputs (cortical surfaces and curva-
ture maps). It is also compatible with other cortical surface 
extraction software suites as long as these provide a surface 
mesh and a vertex-wise curvature map.

Our proposed methodology overcomes limitations such 
as the under- or overestimation of the sulcal length and the 
spilling of sulcal lines into gyral regions. ABLE also eludes 
the tracing of anastomotic sulci (Kochunov et al., 2009) 
while maintaining the lines traversing through regions with 
high curvature values inside the same sulcal basin. Besides, 
it extends the existing skeleton-based methods by filtering 
the sulcal basins, applying Laplacian collapse, and detect-
ing the endpoints of the resulting skeletonized mesh. A 
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test-retest dataset is used for assessing and validating the 
results by comparing ABLE with the three publicly avail-
able methodologies: BrainVISA’s GPDM (Le Troter et al., 
2012), Mindboggle (Klein et al., 2017), and TRACE (Lyu 
et al., 2018).

Methods

The proposed method employs the cortical surfaces and their 
corresponding curvature maps to automatically extract the 
sulcal fundi and gyral crown lines. These cortical surfaces 
are triangular meshes defined in the boundaries between 
grey and white matter (white surface) and grey matter and 
cerebrospinal fluid (pial surface).

The method first segments the mentioned cortical sur-
face in gyral and sulcal regions using the depth and cur-
vature of the same. Then, for the gyral and sulcal surfaces, 
lines are extracted based on the curvature and shape of the 
region. The shape is preserved by detecting the endpoints of 
the surface, i.e., the points that represent the characteristic 
extremities. Detecting the termini can be challenging, as it 
is harder to define algorithmically where those points lie. 
However, locating the endpoints on a set of thin lines is 
a more approachable task. This is why a Laplacian mesh 
contraction is applied, turning the surface into a thin mesh. 
On this thinned surface, the detection of the termini can be 
performed while simultaneously discarding the anastomotic 
sulci. Finally, while preserving those endpoints, the algo-
rithm decimates the surface until a single line is obtained. 
In the following sections, the method is explained in detail.

Geodesic Depth Map Estimation

A geodesic depth map for the pial surface is computed by 
using the methodology developed in Rettmann et al. (2002). 
The depth map computation begins with the estimation of an 
outer hull surface that allows the identification of the gyral 
parts of the surface. The outer hull surface is a smooth enve-
lope wrapped around the pial surface that does not encroach 
into the sulci. The process of generating this outer hull can 
be seen as the surface equivalent of a topological closing 
in the vertex domain. Using a marching cubes algorithm 
with a Cartesian grid with distances between points lower 
than the mean edge length of the surface, we generate an 
isosurface at a 10 mm distance from the pial surface. This 
isosurface represents the pial with a displacement of 10 mm 
along the direction of the surface’s normals. Then, this off-
set isosurface is shrunk 10 mm in the opposite direction of 
its normals, thus generating the hull surrounding the pial 
surface. The points, over the hull surface, intercepting the 
pial surface are labeled as zero-depth points and taken as 
gyral regions. Hence, sulcal regions are compound by the 

remaining pial surface points. Finally, the depth map is cal-
culated as the minimum geodesic distance from the points in 
the sulcal regions to any of the zero-depth vertices. The geo-
desic distance was computed using the algorithm proposed 
in Mitchell et al. (1987) as implemented in the Geometry 
Processing Toolbox (gptoolbox) (Jacobson et al., 2018) for 
MATLAB.

Gyral Crowns Lines and Sulcal Fundi Extraction

The computation of sulcal fundi and gyral crown lines con-
sists of several steps (see the complete workflow in Fig. 1) 
that process the white and pial surfaces, along with the cur-
vature and geodesic depth maps, to obtain the lines travers-
ing the gyral crowns and sulcal fundi.

Sulcal Segmentation

The initial step subdivides the white surface into meshes 
representing the gyral regions and the sulcal basins using the 
curvature and depth maps. The white surface is segmented, 
labeling as sulcal regions the vertices with positive curva-
ture and depth over 1 mm. Positive curvature is often used 
as a boundary threshold between sulcal and gyral regions 
but tends to include more vertices of the sulcal regions than 
desired due to the positive curvature of the sinuous parts 
of sulcal banks. These errors are minimized by adding a 
depth threshold of 1 mm. This way, not only the vertices 
with high curvature are selected, but vertices must also be 
deep enough to be considered sulcal regions. Thus, deeper 
regions with curvature values close to zero are included in 
the sulcal basins. This thresholding splits the white matter 
mesh into two: sulcal and gyral surfaces (see Fig. 1A-1).

Gyral Crowns Extraction

The gyral crown lines are extracted from the gyral surface 
(Fig. 1A-2). The white matter surface is used for this step 
as the gyral regions are sharper, presenting a marked path 
that is not as noticeable on the pial surface. This surface 
is the result of removing the regions considered as sulcal 
basins from the white matter surface. This deletion creates 
a gap or hole in the surface that the gyral crown lines must 
encircle. In addition, gyral crown lines must include the 
gyral endings such as the one depicted in Fig. 2A. Thus, 
the generation of these lines needs to fulfill two main con-
ditions: 1) the number of holes present in the gyral surface 
due to the deletion of the sulcal regions must be preserved 
in the representation of the gyral line, and 2) the gyral 
shape should be maintained by preserving the gyral end-
ings. To fulfill the second condition, we must detect and 
label the gyral endings, defined as the regions where the 
gyral surface loses depth and curvature and converges to a 
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sulcal region. For this, the gyral surface is collapsed using 
a Laplacian mesh contraction to detect the endpoints of the 
gyral endings (Fig. 2A).

After removing the sulcal basins from the original surface, 
the sulci-gyri boundary in the removed sections may present 
irregularities due to transitional vertices in the tessellation of 

Fig. 1  Processing workflow summary. A Workflow for the extrac-
tion of gyral crown lines and the sulcal basins used for the sulcal 
fundi lines extraction. Curvature and depth maps are thresholded 
(1) to obtain an initial cortical surface parcellation into sulcal basins 
and gyral regions (2). These gyral regions are filtered and collapsed; 
then, an endpoint detection algorithm is applied (3). The gyral crown 
lines are estimated by decimating the surface while preserving the 
endpoints and sulcal holes (4). These gyral crown lines are used to 

delimit the sulcal basins containing the sulcal fundi lines (5). B Pro-
cessing steps applied for each sulcal basin. The depth map is thres-
holded (6) to remove basins sections containing gyral regions, and 
the resulting surface is filtered and collapsed to detect the sulcal end-
points (7). Finally, as in the gyral crown extraction, the sulcal basin 
surface is decimated, preserving holes and endpoints (8) to obtain the 
sulcal fundi lines (9)
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the mesh. These irregularities often cause the appearance of 
spurious branches that are a potential source of noise in the end-
point detection. This is why before applying the Laplacian col-
lapse, an iterative mean filtering process is applied to spatially 
smooth the gyral surface mesh. In each iteration of the filtering 
process, the surface vertices’ positions are updated by moving 
them towards the center of masses of the blocks formed by each 
vertex and its neighbors. The number of iterations determines 
the degree of filtering of the surface. For the tested dataset, val-
ues between 80 and 120 were, after visual inspection, adequate 
for obtaining a gyral surface mesh retaining the main shape of 
the surface and without high-frequency spatial variations. In 
this work, a value of 100 was selected, although fewer itera-
tions can be applied if needed.

Afterwards, the Laplacian-collapse algorithm (Au et al., 
2008) is applied to the filtered mesh to obtain a thinned rep-
resentation of the gyral surface where the endpoints can be 
extracted. Specifically, an implementation of the algorithm 
(Au et al., 2008) in gptoolbox (Jacobson et al., 2018) was 
used for this purpose. This is an iterative process in which, 
given a triangular mesh surface S with faces F, edges E, and 
n vertices V at initial positions V�=0 , in every step new posi-
tions for the vertices V�+1 are obtained as those minimizing 
the quantity

Here, on the one hand, L� is the n × n Laplacian matrix 
computed for the surface with vertex positions V� , whose 
components are given by

where eij is the edge connecting the vertices i and j, F(eij) is 
the set of surface faces that are composed by the edge eij . �
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is the angle opposite to the edge eij in the face f and N(i) is 
the set of vertices adjacent to i. On the other hand, M� is the 
n × n mass matrix for the surface with vertex positions V� . 
This is a diagonal matrix whose elements are given by 
M�

ii
= A�

i
 , where A�

i
 is given by the sum of the area of the 

faces containing the vertex i. Finally, � is a constant that 
modulates the importance of the Laplacian term and the 
mass term. The Laplacian term induces the collapse of the 
surface, while the mass term induces the vertices to keep the 
original position. Here, this parameter is fixed as 
� = 103∕D2

0
 , where D0 is the Euclidean distance between the 

most distant vertices of the initial surface. Therefore, the 
Laplacian and the mass matrices are recomputed with the 
updated vertex positions in each iteration. Vertices with 
associated Laplacian components larger (in absolute value) 
than 105 are kept fixed. The iterative process finishes when 
the one-iteration reposition distance for all the vertices is 
less than 1% of the average edge distance on the initial sur-
face. The resulting surface is a thinned version of the origi-
nal gyral surface that maintains the connectivity and topol-
ogy of the original gyral surface mesh. Finally, the extreme 
branch points of this surface are detected and labeled as the 
gyral endpoints (Fig. 1A-3).

The detection of the gyral endpoints is based on the 
method proposed by (Kao et al., 2007). Every vertex in the 
gyral thinned mesh is evaluated by taking its neighboring 
vertices and applying a Principal Components Analysis 
(PCA) to the vertices’ coordinates in order to extract the 
extreme points along the principal dimension. Gyral end-
points are defined as the points that appear as extreme points 
in every neighborhood they belong to. For each vertex, the 
neighboring points are the vertices located at a maximum 
geodesic distance of 20 mm. This threshold value was an 
appropriate value for the tested dataset to extract the main 
gyral branches while removing the shortest ones. To accel-
erate the endpoint detection process, given the vast amount 
of vertices in the gyral surface, only the vertices forming an 

Fig. 2  A Delineation of gyral 
crown lines (in white) in a gyral 
branch that fades over the left 
anterior cingulate sulcus. In 
red, the estimated endpoint for 
this protruding gyral region. B 
Extracted sulcal lines (white) 
and endpoints (red) for different 
sulcal basins located at the left 
parietal cortex



150 Neuroinformatics (2023) 21:145–162

1 3

angle lower than 30◦ with their corresponding neighbors in 
a face are evaluated. This is because only the vertices in the 
acute “corners” of the surface are suitable to be endpoints, 
so there is no much interest in evaluating the rest of the 
points.

The gyral crown lines must connect the endpoints while 
enclosing the holes in the surface. For this, the gyral surface 
mesh is eroded during an iterative process in which, in each 
iteration, the boundary vertex (and its associated faces) are 
deleted from the mesh. Three main conditions should be 
fulfilled to eliminate this boundary vertex: 1) the vertex is 
not an endpoint; 2) its removal does not change the topol-
ogy of the gyral surface or the endpoints connectivity; 3) 
it should be the vertex with the minimum curvature value 
among those satisfying requirements 1 and 2. The conditions 
are assessed by listing the boundary vertices according to 
their curvature values and evaluating, starting from the one 
with the lower curvature, if the previously described condi-
tions are achieved.

The iterations are performed until no other surface ver-
tex is removed (Fig. 1A-4). The output of this process is a 
surface containing the remaining vertices and their shared 
faces. This surface is simplified to a set of lines by keep-
ing only the external boundary edges. These lines represent 
the maximum curvature paths connecting the detected gyral 
surface endpoints and enclosing the surface holes. Finally, 
the sulcal basins are defined as the individual sulcal surfaces 
enclosed by these gyral crown lines (Fig. 1A-5).

Sulcal Fundi Extraction

The methodology used to obtain the sulcal lines is similar 
to the one described in the previous section. In this case, the 
surface used is the pial one, as is the one presenting sharper 
sulci. The use of one surface or the other is possible due to 
the fact that FreeSurfer surfaces maintain correspondence 
between indices and faces in pial and white meshes. This 
allows projecting different cortical maps in either surface 
indistinctly.

For each sulcal basin extracted from the pial surface, 
the vertices with geodesic depth below 2 mm are removed 
(Fig. 1B-6) to exclude the gyral regions from the process. 
Then, except for the endpoint detection step (Fig. 2B), the 
remaining processing stages (surface filtering, surface col-
lapse, and vertices deletion) are performed following the 
same approach as the one used for the gyral crowns lines 
estimation (Fig. 1B-7 – B-8). However, with respect to the 
endpoint detection step, there are two main differences com-
pared to the previously described approach. First, a distance 
threshold of 5 mm is used to define each vertex neighbor-
hood (Kochunov et al., 2009). This condition prunes out the 
small branches related to possible anastomotic sulci. Sec-
ond, the endpoint detection is not restricted only to vertices 

that form an angle lower than 30° with their corresponding 
neighbors. Differently from the gyral lines extraction, in this 
case no substantial acceleration in computation time was 
found when applying this restriction.

Similarly to the previous section, the result of the erosion 
process is a surface containing the remaining vertices and 
their shared faces. This mesh is then represented as a non-
directed weighted graph Gsulc = (N,E,W) , where N is the 
set of nodes (surface vertices), E is the set of edges connect-
ing pairs of contiguous points, and W represents the edges’ 
weights (connection strength between vertices). The weight 
of an edge connecting vertices i and j is defined by the fol-
lowing mathematical expression:

where Ci and Cj are the curvatures values for vertices i and 
j respectively.

A minimal spanning tree algorithm (Kruskal, 1956) is 
applied to the sulcal graph with the curvature weights to 
find the minimal set of edges connecting all the vertices 
while removing possible graph cycles. Finally, the Dijkstra 
algorithm (Dijkstra, 1959) is applied to this graph to find the 
edge paths that accumulate the lowest weight value along 
the whole trajectory between every pair of endpoints. These 
paths are defined as the sulcal line corresponding to this 
specific basin. The output of applying this process to each 
sulcal basin is the set of sulcal fundi lines for a given cortical 
surface (see Fig. 3).

Validation

Sample and MRI Acquisition

T1-weighted images (T1w) from the Human Connectome Pro-
ject (HCP) Test-Retest dataset (https:// db. human conne ctome. 
org/) (Van Essen et al., 2012)) were selected to evaluate the 
developed method. This dataset includes 45 healthy subjects 
(13 male, age range of 22-35 years old) scanned twice ( 4.7 ± 2 
months interval, minimum = 1 month, maximum = 11 months) 
on a Siemens 3T Skyra scanner in Washington University or 
University of Minnesota. T1w sagittal images were acquired 
using a Magnetization-Prepared Rapid Acquisition Gradient 
Echo (MPRAGE) sequence with 3D inversion recovery, echo 
time (TE) = 2.14 ms, repetition time (TR) = 2400 ms, inversion 
time (IT) = 1000 ms, flip angle (FA) = 8°, Bandwidth (BW) = 
210 Hz per pixel, echo spacing (ES) = 7.6 ms, gradient strength 
= 42 mT∕m , field of view (FOV) = 180 × 224 × 224mm3 , 
voxel size = 0.7 × 0.7 × 0.7mm3 and an acquisition time of 7 
minutes and 40 seconds. Alongside the native T1w, the HCP 
consortium also provides the cortical surfaces (pial and white) 

(3)Wi,j =
2

Ci + Cj

https://db.humanconnectome.org/
https://db.humanconnectome.org/
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and their curvature maps, obtained by a project-specific Free-
Surfer pipeline (Glasser et al., 2013).

Evaluation Metrics

There are no gold standard metrics for assessing and evaluat-
ing the results obtained by the developed methodology. Pre-
vious works have used manually delineated datasets such as 
the MRIs Surfaces Curves (MSC) dataset (Joshi et al., 2010; 
Pantazis et al., 2010). We discarded the use of the MSC data-
set because the sulcal fundi lines defined in this dataset jump, 
sometimes, over gyral crowns and take paths outside sulcal  
regions (Lyu et al., 2018). Instead, the strategy proposed for  
the evaluation of our method consists of comparing its results 
with the ones obtained by three well-known methods of sul-
cal features extraction: TRACE (Lyu et al., 2018), GPDM 
(Le Troter et al., 2012), and Mindboggle (Klein et al., 2017). 
All analyses are performed in ten primary sulci (five for 
each hemisphere) that are consistently present across indi-
viduals and show less inter-individual variability compared 
to other sulci: central sulcus, calcarine, superior temporal 
sulcus, parieto-occipital fissure, and cingulate sulcus on both 
hemispheres (Amiez et al., 2018). The manual labeling of the 
lines is challenging, requiring a high degree of expertise. To 
overcome these issues, we labeled the selected sulcal basins 
using BrainVISA Morphologist (Fischer et al., 2012). This 
tool automatically labels different sulci and allows the user 
to correct the pre-computed sulcal mesh labels manually. 
This correction is key to maintaining a spatial correspond-
ence between test and retest and between subjects. Then, the 
sulcal labels are projected to the pial surfaces. This creates a 
unique manually corrected sulcal basin over the mesh where 

the sulcal lines for all the methods are identified, thus gen-
erating a common tag for each sulcal basin in every method 
and subject.

Depth and Curvature Comparison Sulcal lines should trav-
erse the regions with higher curvature and depth. Hence, we 
compare ABLE against the other methods in terms of mean 
curvature and depth along the sulcal lines produced by any 
of them to see which one yields higher values of these two 
metrics along the lines. For this, we use the pial curvature 
and depth maps produced by FreeSurfer and Mindboggle, 
respectively. The statistical comparison of mean depth and 
curvature values for each sulcus is performed using paired 
sample t-test analyses. For each of the ten sulci, we com-
pare ABLE with GPDM, TRACE, and Mindboggle. The  
resulting p-values are corrected for multiple comparisons 
using False Discovery Rate (FDR) (Yekutieli & Benjamini, 
2001), considering q ≤ 0.05 as significant.

Sulcal Length Assessment BrainVISA’s Morphologist pipe-
line (Fischer et al., 2012) has been widely used in many 
previous studies for the in-vivo assessment of the sulcal 
morphometry (Pizzagalli et al., 2020; Aleman-Gomez et al., 
2013; Hopkins et al., 2014; Shokouhi et al., 2012; Im et al., 
2006). Thus, in this work, we take its length values as refer-
ence values for our comparisons. The pial surface is used to 
estimate the sulcal lengths for every method. For each sulcus 
of interest, a linear regression analysis is performed where 
the length of the lines obtained by any of the methods and 
the reference length values are the dependent and independ-
ent variables, respectively. The p-values resulting from these 
regressions are corrected using FDR ( q ≤ 0.05 ). Besides, 

Fig. 3  Individual brain lines computed using ABLE. A Gyral crowns 
(red) and sulcal fundi (white) lines depicted on the white matter 
surface. The greyscale map represents the curvature values, where 
higher curvature values (fundi) are lighter and lower curvature val-
ues (gyri) are represented in dark. B shows the gyral crowns (red) and 
sulcal fundi (white) depicted on the inflated white surface. Superim-

posed to the curvature map is the subdivision of the different sulcal 
basins obtained by our method. Two zoom-in images show the lines 
for central and cingulate sulci obtained by the different sulcal lines 
extraction methods. Note: Lines in blue correspond to GPDM, red to 
ABLE, green to TRACE, and orange to Mindboggle
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sulcus-specific and global Bland-Altman plots are created to  
study the agreement between the sulcal lines length and the 
BrainVISA length values. Limits of Agreement (LoA) for 
Bland-Altman are estimated as the mean difference ±1.96 
standard deviation.

Test‑Retest Comparison To assess the reproducibility and 
evaluate the spatial extraction error for each subject, we meas-
ure the mean and maximum Hausdorff distances between the 
lines extracted from the test and retest acquisitions using the 
four methods of interest. For this, we first align the retest (R) 
cortical surface to its correspondent test (T) cortical surface 
by using the Iterative Closest Point (ICP) algorithm (Besl & 
McKay, 1992). Then, Hausdorff distances between the sulcal 
lines over both aligned surfaces are estimated as proposed in 
GPDM (Le Troter et al., 2012). Concretely, we compute the 
Hausdorff distances between the lines obtained for the test and 
the aligned retest surfaces for each sulcus (see Expression 4).

In these expressions, d(t, r) is the Euclidean distance 
between the vertices of the sulcal lines t and r extracted 
from both the test and the aligned retest cortical surfaces, 
respectively. Hmean reports the mean distances while Hmax 
measures the maximum distance between the vertices on 
T and their closest points in R. These measures are sym-
metrized by averaging H(T,R) and H(R,T) for each of the 
metrics.

The selection of the Euclidean distance instead of geo-
desic distance, as proposed in GPDM (Le Troter et al., 2012), 
responds to the spatial differences between test and retest cor-
tical surfaces. The registration between both meshes is rigid, 
and therefore non-linear local deformations are not allowed. 
This causes that the correspondence between the vertices is 
not perfect and by using the Euclidean distance, we avoid 
projecting the vertices from one surface to the other.

The performance and reproducibility in terms of mean 
and maximum Hausdorff distances are evaluated using t-test 
analyses. As the Hausdorff distance values are not normally 
distributed because of the presence of outliers in this met-
ric, the base 10 logarithm was applied to rescale the values 
before the statistical analysis. The p-values resulting from 
these tests are corrected for multiple comparisons using 
FDR, considering q ≤ 0.05 as significant.

All statistical analyses were conducted using Python’s 
package Pingouin (Vallat, 2018).

(4)Hmean(T, R) =
1

|T|
∑
t∈T

min
r∈R

d(t, r)

(5)Hmax(T, R) = max
t∈T

min
r∈R

d(t, r)

Results

Brain lines: Gyral Crowns and Sulcal Fundi

Figure 3 displays the brain lines obtained by using the devel-
oped method, ABLE. The images in Fig. 3A show how the 
gyral lines traverse the top of the gyral regions. Figure 3B 
depicts the sulcal lines over the inflated surface along with the 
gyral crown; the different sulcal basins are represented with 
different colors. The zoom-in of these images compares the 
lines obtained by ABLE (red) to the ones extracted by using 
GPDM (blue), Mindboggle (orange) and TRACE (green).

Sulcal Fundi Curvature and Depth

The analysis of the differences in sulcal fundi curvature (Fig. 4) 
shows that ABLE presents significantly higher curvature val-
ues than the other methods except for GPDM ( q < 0.05 , see 
Supplementary Table S1). ABLE and GPDM are very similar 
in terms of mean curvature values in all the sulci, except for 
the right calcarine sulcus ( t = −4.06 , q = 0.002 ) and parieto-
occipital fissure ( t = −3.12 , q = 0.031 ), where GPDM scores 
higher curvatures; and the right cingulate sulcus ( t = 6.57 , 
q < 0.01 ), with ABLE producing higher curvature than GPDM.

In case of sulcal fundi depth differences (Fig. 4 and Sup-
plementary Table S1), ABLE shows lower depth values than 
GPDM in every sulcus (with t-values ranging from −27.55 
to −7.77 , and q < 0.001 ) except for the left and right cingu-
late sulcus (with t = 4.25 , q = 0.001 ; and t = 3.24 , q < 0.001 
respectively). ABLE shows larger depth values compared to 
Mindboggle for the central sulcus (left: t = 12.34 , q < 0.001 
and right: t = 9.46 , q < 0.001 ) and superior temporal sulcus 
(left: t = 8.54 , q < 0.001 ; and right: t = 9.58 , q < 0.001 ) in 
both hemispheres. It also has lower values in the left cingu-
late sulcus ( t = −4.70 , q < 0.001 ) and right parieto-occipital 
fissure ( t = −4.42 , q < 0.001 ). No other significant differ-
ences are found ( q < 0.05 ). Finally, ABLE has higher depth 
values than TRACE in all the sulci except for the left cingu-
late sulcus and bilateral parieto-occipital fissures where no 
significant differences are found.

Sulcal Fundi Longitudes

Figure 5 shows, for the selected sulci, the regression results 
between the sulcal fundi longitudes computed for each 
method (y-axes) versus the reference values, BrainVISA’s 
Morphologist (x-axes).

In Table 1 we provide the coefficient of determination 
( R2 ), the slope and the associated T-value for each linear 
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regressions analysis. In Table S4 of the Supplementary 
Material we also provide the results for the regressions 
intercepts. We can observe from these values that regres-
sions between ABLE and BrainVISA longitudes present 
slopes, on average, closer to one (ranging between 0.65 
and 1.20) except for the central sulcus, where values are 
lower (0.49 for left and 0.38 for right). Every coefficient 
value for ABLE is significant ( q < 0.05 ). For TRACE 
longitudes, the obtained slopes (range: 1.05 – 2.39) and 

intercepts (range: 12.27 – 154.23) are consistently over 
one and zero respectively, except for the right central sul-
cus (slope = 0.61 , q = 0.190 ) and right superior temporal 
(intercept = −36.53 ). Mindboggle values also presents 
slopes near one for all the sulci (range: 0.68 – 1.05), 
except for the left calcarine (slope = −0.01 , q = 1.000 ). 
GPDM presents flatter slopes with values lower than 
one (range: 0.56 – 0.28 where q < 0.05 ) for all the sulci. 
Regarding the obtained R2 values, these are quite similar 

Fig. 4  Differences in curvature (top) and depth (bottom) between ABLE and the other reference methods. Symbols “*”, “**”, and “***”, stand 
for significant differences between methods with FDR-corrected p-values lower than 0.05, 0.01, and 0.001 respectively
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for ABLE and TRACE (ABLE is between 0.08 and 0.52, 
while TRACE shows values between 0.10 and 0.58).

Figure  6 shows Bland-Altman plots comparing the 
length obtained using the line extraction methods against 
the BrainVISA length for all the sulci. The plot shows that 
the mean length difference between ABLE and BrainVISA 
is the lowest among all the sulcal lines extraction methods 
(2.24 mm). In the case of GPDM, there is an underestima-
tion of the mean sulcal length ( −84.66 mm) compared to the 
mean length reported by BrainVISA. Finally, Mindboggle 
and TRACE depict mean length differences of 25.89 mm 
and 113.8 mm respectively, compared to the reference val-
ues (i.e., BrainVISA).

More information about the mean length differences 
between each method and BrainVISA for each individual 
sulcus can be found in Table S3 and in the Bland-Altman 
plots shown in the Figs. S1–S10 of the Supplementary 
material.

Reproducibility: Hausdorff Distances Between Test 
and Retest

The logarithms of the mean and maximum Hausdorff distances 
are used to assess the reproducibility of each method. These log-
arithms for every sulcus are depicted in Fig. 7 and summarized 
in Supplementary Table S2 along with the statistical results. 
TRACE presents the lowest averages ( −0.16 – −0.04 ) and 
standard deviations of the mean Hausdorff distances for most 
of the sulci, followed by ABLE (mean values between −0.18 
and 0.10). ABLE performs better than Mindboggle for the 
bilateral calcarine (left: t = −4.81, q < 0.001 , right: t = −4.63 , 
q < 0.001 ), bilateral central (left: t = −7.40, q < 0.001 , 
right: t = −6.37 , q < 0.001 ), and left superior temporal 
sulcus ( t = −5.66 , q < 0.001 ). The significant differences 
with GPDM are limited to the left parieto-occipital fissure  
( t = −4.04 , q = 0.003 ). For the maximum Hausdorff distances, 
significant differences between ABLE and TRACE are limited  

Fig. 5  Scatter plots and regression of the longitudes obtained using the different sulcal lines extraction methods and the BrainVISA longitudes 
for the studied sulci. The dashed line the regression coefficient = 1 and intercept = 0
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to the left calcarine sulcus ( t = 3.42 , q = 0.014 ) and right cen-
tral sulcus ( t = −4.33 , q = 0.001).

Execution Time

The algorithm takes about 9 minutes to process a FreeSurfer’s 
mesh of 130k vertices using a single core of an Intel Core 
i7-9700 (3.00GHz), requiring around 3GB of RAM.

Discussion

We present a new method for the automated delineation of 
sulcal fundi and gyral crown lines and validate our approach 
against three publicly available methods. Globally, our 
approach performs similarly or better for the tested metrics, 
providing a reliable and improved method for extracting 
brain sulcal fundi lines.

The lack of a unique criterion for the definition of sul-
cal fundi lines makes it difficult to judge which method is 
more accurate. Indeed, the sulcal fundi lines should traverse 
regions with the highest mean curvature for some methods, 
while for other methods, the lines should traverse regions 
with the highest depth. Depth-based methods use either 

Euclidean or geodesic (Klein et al., 2017) definitions of 
depth or a mixture of them (Kao et al., 2007) which fur-
ther illustrates the lack of a single set of criteria for evalua-
tion. Depending on the objective, one method can be more 
appropriate than another. For example, GPDM minimizes 
the labeling of bifurcations at the expense of obtaining 
shorter sulcal fundi lines with high curvature values while 
leaving extensive regions of the sulcal basins without lines. 
On the other side, TRACE and Mindboggle include small 
sulcal bifurcations in their labeling at the expense of having 
much lower curvature and depth values along these lines. 
ABLE is designed to reach an intermediate solution, labeling 
branches but avoiding anastomotic sulci.

Assuming that sulcal fundi run across paths with the 
highest depth and curvature, these values are used as quan-
titative metrics to evaluate the extraction methods. GPDM 
is the method with the best performance in both metrics, 
followed by ABLE. These results indicate that these two 
methods traverse the sulci’s fundus more precisely than the 
other methods. This result is coherent with what is presented 
in Fig. 3, as GPDM only labels regions with very high curva-
ture located at the center of the sulcal basins. Besides, small 
bifurcations, perpendicularly to the main sulcal line, tend to 
rapidly decrease in curvature and depth; both Mindboggle 

Fig. 6  Bland-Altman plots comparing the four methods (ABLE, 
GPDM, Mindboggle, and TRACE) against BrainVISA sulcal lengths. 
The plot includes every sulcus of interest (each one in a different 

color) in both left and right hemispheres. Limits of Agreement (LoA) 
are estimated as the mean difference ±1.96 standard deviation
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and TRACE tend to include these branches and therefore 
present lower values.

Similarly, sulcal length comparisons demonstrate that 
ABLE is the closest to BrainVISA (Fig. 6A), except for the 
Parieto-Occipital Fissure, while GPDM tends to considera-
bly underestimate the length of the sulcal lines (Fig. 6B). On 
the other hand, TRACE’s longitude values are notably over-
estimated (Fig. 6D). The longitudes obtained by Mindboggle 
are in a range between TRACE and ABLE (Fig. 6C). These 

findings confirm that GPDM produces shorter sulcal lines, 
while TRACE and Mindboggle label many short branches 
resulting in greater sulcal length. This effect can be observed 
in Fig. 6, where TRACE and Mindboggle show larger dif-
ferences for higher mean length values. ABLE establishes a 
compromise between both alternatives, which is more pre-
cise given the results of the comparison against the reference 
sulcal length values extracted from BrainVISA. Neverthe-
less, the methods mentioned above contain parameters and 

Fig. 7  Comparisons of logarithms of mean (top) and maximum (bot-
tom) Hausdorff distances between ABLE and the reference meth-
ods. These distances are computed between sulcal lines coordinates 

extracted for test and retest acquisitions. Symbols “ ∗ ”, “ ∗∗ ”, and “ ∗∗∗ ”, 
stand for significant differences from a t-test with FDR-corrected 
p-values lower than 0.05, 0.01, and 0.001, respectively
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thresholds that can directly or indirectly affect the measured 
lengths. In this paper, the recommended parameters for each 
method have been selected, as we assume this would be the 
proceeding of most potential users. However, researchers 
could adjust the parameters of these tools to obtain a result 
better suited to the needs of each study, although the interac-
tion of the parameters with the metric obtained is not always 
obvious (Sect. S6 in Supplementary Material). In addition, 
the sulcal line endpoints could affect the length values of 
ABLE, TRACE, and Mindboggle. Incorrect detection of 
endpoints leads to an over- or underestimation of the sulcal 
length, e.g., due to in- or exclusion of sulcal branches. End-
point detection relies heavily on the selected parameters (i.e., 
the filtering iterations and the neighborhood size around the 
endpoints), and an exhaustive study should be performed to 
estimate their optimal values. The values employed in this 
paper were selected after an evaluation using healthy young 
subjects of different sex and age. These default values can be 
fine-tuned and adjusted to each particular dataset.

Regarding the robustness and reproducibility, TRACE pre-
sents lower values in terms of mean Hausdorff distance, pro-
ducing in some cases values lower than 1 mm. ABLE performs 
better than GPDM and Mindboggle for the mean Hausdorff 
distance, showing mean distance values close to 1 mm. This 
distance value is equivalent to a sulcal line displacement of one 
edge over the cortical surface between the lines computed from 
test and retest datasets. TRACE is the most reliable method in 
terms of mean Hausdorff distances. However, this result must 
be interpreted with caution. First, TRACE does not traverse 
the vertices on the surface; it follows a path through different 
parts of the edges (Lyu et al., 2018). This makes the method 
less dependent on the topology of the mesh in regions where 
vertices are more scattered, while point density in the extracted 
lines shows a relation with the mean Hausdorff distances (see 
S7 in Supplementary Material). Second, TRACE labels more 
sulcal line bifurcations compared to the other methods. It is 
more probable to find a closer distance between sulcal lines 
from the test and retest when those lines contain more points 
than lines compounded by fewer points. Maximum Hausdorff 
distances for the four methods are similar, with few signifi-
cant differences between ABLE and the other methods. GPDM 
shows slightly better results than the other methods for this 
metric, supporting the hypothesis that a higher number of line 
points improves the performance in mean Hausdorff distance, 
as substantial errors tend to be masked when more points are 
counted. However, there is a lack of a complete analysis of how 
the variation of parameters and the number of curves labeled in 
each method affects the reproducibility that can be the subject 
of future studies.

Reliable and reproducible sulcal lines extraction meth-
ods open many opportunities for the study, in vivo, of 
pathologies inducing topological changes in the brain 

cortex such as Alzheimer’s disease or mental disorders. 
For example, there is ample post-mortem evidence for 
supragranular layer damage associated with schizophre-
nia but in vivo evidence is sparse (Wagstyl et al., 2016). 
Supragranular layers are thicker in sulci, particularly at the 
fundus, compared to gyri. Therefore, one could hypoth-
esize that disease-associated supragranular layer damage 
may be more prevalent in sulcal fundi as compared to gyral 
crowns. By assessing cortical thickness (as a marker of 
cortical layer damage) at fundi/crowns, we can examine 
this hypothesis in vivo.

Finally, ABLE relies on gyral crown lines to define the 
sulcal basins containing the sulcal lines. Due to the lack of 
available methods for delineating the gyral crown lines, we 
did not implement a formal evaluation of the extraction of 
these lines. Future studies should be performed to quanti-
tatively and qualitatively assess the performance of ABLE 
and other gyral crowns lines extraction.

In summary, it is noteworthy that ABLE is the most bal-
anced method among those compared. For sulcal length, 
ABLE performs better than GPDM in terms of reproducibility 
and correlation with BrainVISA sulcal length values, although 
GPDM provides sulcal lines with a moderately higher curva-
ture or depth. Also, ABLE performs better than TRACE in 
mean curvature, depth, and correlation with BrainVISA for 
sulcal length, although TRACE’s mean Hausdorff distance 
values are slightly better. These findings confirm ABLE as a 
reliable method to extract sulcal lines with an accurate repre-
sentation of the sulcal topology while avoiding anastomotic 
branches and the overestimation of the sulcal fundi lines.

Conclusion

In this paper, we present a new method for the automatic 
extraction of sulcal and gyral lines. The method uses 
smoothed patches of the cortical surfaces to generate col-
lapsed meshes where the endpoints of the sulcal and gyral 
crown lines are detected. By accurately detecting these end-
points, smaller anastomotic sulcal and gyral crown lines are 
discarded while preserving the main sulcal and gyral crown 
line topology. The results demonstrate that lines obtained 
by ABLE contain high curvature and depth, and their length 
strongly correlates with the state-of-the-art reference values. 
This method also delivers correct results in terms of repro-
ducibility (mean and maximum Hausdorff distances). The 
ABLE algorithm offers a publicly available alternative for 
the extraction of sulcal and gyral crown lines with an execu-
tion time of 10 minutes per surface and ready to be used with 
FreeSurfer’s pipeline without further adaptations (https:// 
github. com/ HGGM- LIM/ ABLE).

https://github.com/HGGM-LIM/ABLE
https://github.com/HGGM-LIM/ABLE
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