186 research outputs found

    Non-invasive evaluation of ventricular refractoriness and its dispersion during ventricular fibrillation in patients with implantable cardioverter defibrillator

    Get PDF
    BACKGROUND: Local ventricular refractoriness and its dispersion during ventricular fibrillation (VF) have not been well evaluated, due to methodological difficulties. METHODS: In this study, a non-invasive method was used in evaluation of local ventricular refractoriness and its dispersion during induced VF in 11 patients with VF and/or polymorphic ventricular tachycardia (VT) who have implanted an implantable cardioverter defibrillator (ICD). Bipolar electrograms were simultaneously recorded from the lower oesophagus behind the posterior left ventricle (LV) via an oesophageal electrode and from the right ventricular (RV) apex via telemetry from the implanted ICD. VF intervals were used as an estimate of the ventricular effective refractory period (VERP). In 6 patients, VERP was also measured during sinus rhythm at the RV apex and outflow tract (RVOT) using conventional extra stimulus technique. RESULTS: Electrograms recorded from the RV apex and the lower esophagus behind the posterior LV manifested distinct differences of the local ventricular activities. The estimated VERPs during induced VF in the RV apex were significantly shorter than that measured during sinus rhythm using extra stimulus technique. The maximal dispersion of the estimated VERPs during induced VF between the RV apex and posterior LV was that of 10 percentile VF interval (40 ± 27 ms), that is markedly greater than the previously reported dispersion of ventricular repolarization without malignant ventricular arrhythmias (30–36 ms). CONCLUSIONS: This study verified the feasibility of recording local ventricular activities via oesophageal electrode and via telemetry from an implanted ICD and the usefulness of VF intervals obtained using this non-invasive technique in evaluation of the dispersion of refractoriness in patients with ICD implantation

    Agent based modelling helps in understanding the rules by which fibroblasts support keratinocyte colony formation

    Get PDF
    Background: Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings: A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions: A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine serum

    KRAS Mutations Testing in Colorectal Carcinoma Patients in Italy: From Guidelines to External Quality Assessment

    Get PDF
    BACKGROUND: Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. METHODOLOGY/PRINCIPAL FINDINGS: In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. CONCLUSIONS: The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers

    Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation

    Get PDF
    The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways

    KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer

    Get PDF
    BACKGROUND: KRAS codons 12 and 13 mutations predict resistance to anti-EGFR monoclonal antibodies (moAbs) in metastatic colorectal cancer. Also, BRAF V600E mutation has been associated with resistance. Additional KRAS mutations are described in CRC. METHODS: We investigated the role of KRAS codons 61 and 146 and BRAF V600E mutations in predicting resistance to cetuximab plus irinotecan in a cohort of KRAS codons 12 and 13 wild-type patients. RESULTS: Among 87 KRAS codons 12 and 13 wild-type patients, KRAS codons 61 and 146 were mutated in 7 and 1 case, respectively. None of mutated patients responded vs 22 of 68 wild type (P = 0.096). Eleven patients were not evaluable. KRAS mutations were associated with shorter progression-free survival (PFS, HR: 0.46, P = 0.028). None of 13 BRAF-mutated patients responded vs 24 of 74 BRAF wild type (P = 0.016). BRAF mutation was associated with a trend towards shorter PFS (HR: 0.59, P = 0.073). In the subgroup of BRAF wild-type patients, KRAS codons 61/146 mutations determined a lower response rate (0 vs 37%, P = 0.047) and worse PFS (HR: 0.45, P = 0.023). Patients bearing KRAS or BRAF mutations had poorer response rate (0 vs 37%, P = 0.0005) and PFS (HR: 0.51, P = 0.006) compared with KRAS and BRAF wild-type patients. CONCLUSION: Assessing KRAS codons 61/146 and BRAF V600E mutations might help optimising the selection of the candidate patients to receive anti-EGFR moAbs. British Journal of Cancer (2009) 101, 715-721. doi: 10.1038/sj.bjc.6605177 www.bjcancer.com Published online 14 July 2009 (C) 2009 Cancer Research U

    KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients

    Get PDF
    Contains fulltext : 96042.pdf (publisher's version ) (Open Access)BACKGROUND: KRAS mutation is a negative predictive factor for treatment with anti-epidermal growth factor receptor antibody in metastatic colorectal cancer (CRC). KRAS mutation analysis is usually performed on primary tumour tissue because metastatic tissue is often not available. However, controversial data are available on the concordance of test results between primary tumours and corresponding metastases. We assessed the concordance of KRAS mutation status in a study of 305 primary colorectal tumours and their corresponding liver metastases. METHODS: Patients with histologically confirmed CRC who underwent surgical resection of the primary tumour and biopsy or surgical resection of the corresponding liver metastasis were included. KRAS mutation analysis was performed for codons 12 and 13. RESULTS: KRAS mutation was detected in 108 out of 305 primary tumours (35.4%). In 11 cases (3.6%), we found a discordance between primary tumour and metastasis: 5 primary tumours had a KRAS mutation with a wild-type metastasis, 1 primary tumour was wild type with a KRAS mutation in the metastasis, and in 5 cases the primary tumour and the metastasis had a different KRAS mutation. CONCLUSION: We observed a high concordance of KRAS mutation status of 96.4% (95% CI 93.6-98.2%) between primary colorectal tumours and their corresponding liver metastases. In only six patients (2.0%; 95% CI 0.7-4.2%), the discordance was clinically relevant. In this largest and most homogenous study to date, we conclude that both primary tumours and liver metastases can be used for KRAS mutation analysis

    NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation. Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL promoter

    Prognostic impact of epidermal growth factor receptor (EGFR) expression on loco-regional recurrence after preoperative radiotherapy in rectal cancer

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) represents a major target for current radiosensitizing strategies. We wished to ascertain whether a correlation exists between the expression of EGFR and treatment outcome in a group of patients with rectal adenocarcinoma who had undergone preoperative radiotherapy (RT). METHODS: Within a six-year period, 138 patients underwent preoperative radiotherapy and curative surgery for rectal cancer (UICC stages II-III) at our institute. Among them, 77 pretherapeutic tumor biopsies were available for semi-quantitative immunohistochemical investigation evaluating the intensity and the number (extent) of tumor stained cells. Statistical analyses included Cox regression for calculating risk ratios of survival endpoints and logistic regression for determining odds ratios for the development of loco-regional recurrences. RESULTS: Median age was 64 years (range: 30–88). Initial staging showed 75% and 25% stage II and III tumors, respectively. RT consisted of 44-Gy pelvic irradiation in 2-Gy fractions using 18-MV photons. In 25 very low-rectal-cancer patients the primary tumor received a boost dose of up to 16 Gy for a sphincter-preservation approach. Concomitant chemotherapy was used in 17% of the cases. All patients underwent complete total mesorectal resection. Positive staining (EGFR+) was observed in 43 patients (56%). Median follow-up was 36 months (range: 6–86). Locoregional recurrence rates were 7 and 20% for EGFR extent inferior and superior to 25%, respectively. The corresponding locoregional recurrence-free survival rate at two years was 94% (95% confidence interval, CI, 92–98%) and 84% (CI 95%, 58–95%), respectively (P = 0.06). Multivariate analyses showed a significant correlation between the rate of loco-regional recurrence and three parameters: EGFR extent superior to 25% (hazard ratio = 7.18, CI 95%, 1.17–46, P = 0.037), rectal resection with microscopic residue (hazard ratio = 6.92, CI 95%, 1.18–40.41, P = 0.032), and a total dose of 44 Gy (hazard ratio = 5.78, CI 95%, 1.04–32.05, P = 0.045). CONCLUSION: EGFR expression impacts on loco-regional recurrence. Knowledge of expression of EGFR in rectal cancer could contribute to the identification of patients with an increased risk of recurrences, and to the prediction of prognosis
    corecore