203 research outputs found

    The Forcing Weak Edge Detour Number of a Graph

    Get PDF
    The forcing weak edge detour numbers of certain classes of graphs are determined

    THE UPPER OPEN GEODETIC NUMBER OF A GRAPH

    Get PDF

    Biodeterioration of wooden boats: a major problem facing marine fisheries

    Get PDF
    In India, the fishing industry alone incurs an annual loss of over 120 million rupees on account of biodeterioration of wooden fishing craft. None of the timber species, currently in demand for boat-building, possesses an natural bioresistance and will be completely destroyed within 6 to 12 months. Preventive measures against biodeterioration range from application of several indigenous formulations to metallic sheathings and pressure impregnation of wood with preservative chemicals. These methods do not provide lasting protection, as each has its own short-comings and inadequacies. The need for long-term research in the field of marine biodeterioration for improving the efficiency of currently known control measures, with emphasis on application of non-polluting biological methods, is stressed

    Transforming ideologies of femininity: reading women's magazines

    Get PDF

    UNIQUE ECCENTRIC CLIQUE GRAPHS

    Get PDF
    Let GG be a connected graph and ζ\zeta the set of all cliques in GG. In this paper we introduce the concepts of unique (ζ,ζ)(\zeta, \zeta)-eccentric clique graphs and self (ζ,ζ)(\zeta, \zeta)-centered graphs. Certain standard classes of graphs are shown to be self (ζ,ζ)(\zeta, \zeta)-centered, and we characterize unique (ζ,ζ)(\zeta, \zeta)-eccentric clique graphs which are self (ζ,ζ)(\zeta, \zeta)-centered

    Monophonic Distance in Graphs

    Get PDF
    For any two vertices u and v in a connected graph G, a u − v path is a monophonic path if it contains no chords, and the monophonic distance dm(u, v) is the length of a longest u − v monophonic path in G. For any vertex v in G, the monophonic eccentricity of v is em(v) = max {dm(u, v) : u ∈ V}. The subgraph induced by the vertices of G having minimum monophonic eccentricity is the monophonic center of G, and it is proved that every graph is the monophonic center of some graph. Also it is proved that the monophonic center of every connected graph G lies in some block of G. With regard to convexity, this monophonic distance is the basis of some detour monophonic parameters such as detour monophonic number, upper detour monophonic number, forcing detour monophonic number, etc. The concept of detour monophonic sets and detour monophonic numbers by fixing a vertex of a graph would be introduced and discussed. Various interesting results based on these parameters are also discussed in this chapter

    The Total Open Monophonic Number of a Graph

    Get PDF
    For a connected graph G of order n >- 2, a subset S of vertices of G is a monophonic set of G if each vertex v in G lies on a x-y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G).  A  monophonic set of cardinality m(G) is called a m-set of G. A set S of vertices  of a connected graph G is an open monophonic set of G if for each vertex v  in G, either v is an extreme vertex of G and v ˆˆ? S, or v is an internal vertex of a x-y monophonic path for some x, y ˆˆ? S. An open monophonic set of minimum cardinality is a minimum open monophonic set and this cardinality is the open monophonic number, om(G). A connected open monophonic set of G is an open monophonic set S such that the subgraph < S > induced by S is connected. The minimum cardinality of a connected open monophonic set of G is the connected open monophonic number of G and is denoted by omc(G). A total open monophonic set of a graph G is an open monophonic set S such that the subgraph < S > induced by S contains no isolated vertices. The minimum cardinality of a total open monophonic set of G is the total open monophonic number of G and is denoted by omt(G). A total open monophonic set of cardinality omt(G) is called a omt-set of G. The total open monophonic  numbers of certain standard graphs are determined. Graphs with total open monphonic number 2 are characterized. It is proved that if G is a connected graph such that omt(G) = 3 (or omc(G) = 3), then G = K3 or G contains exactly two extreme vertices. It is proved that for any integer n  3, there exists a connected graph G of order n such that om(G) = 2, omt(G) = omc(G) = 3. It is proved that for positive integers r, d and k  4 with 2r, there exists a connected graph of radius r, diameter d and total open monophonic number k. It is proved that for positive integers a, b, n with 4 <_ a<_ b <_n, there exists  a connected graph G of order n such that omt(G) = a and omc(G) = b

    The connected detour monophonic number of a graph

    Get PDF
    For a connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x − y monophonic path is called an x − y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic path, for some x and y in S. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by dm(G). A connected detour monophonic set of G is a detour monophonic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected detour monophonic set of G is the connected detour monophonic number of G and is denoted by dmc(G). We determine bounds for dmc(G) and characterize graphs which realize these bounds. It is shown that for positive integers r, d and k ≥ 6 with r < d, there exists a connected graph G with monophonic radius r, monophonic diameter d and dmc(G) = k. For each triple a, b, p of integers with 3 ≤ a ≤ b ≤ p − 2, there is a connected graph G of order p, dm(G) = a and dmc(G) = b. Also, for every pair a, b of positive integers with 3 ≤ a ≤ b, there is a connected graph G with mc(G) = a and dmc(G) = b, where mc(G) is the connected monophonic number of G.The first author is partially supported by DST Project No. SR/S4/MS:570/09.Publisher's Versio
    corecore