Original Scientific Paper

UNIQUE ECCENTRIC CLIQUE GRAPHS

A. P. Santhakumaran
Former Professor, Department of Mathematics
Hindustan Institute of Technology and Science, Chennai-603 103, India

Abstract

Let G be a connected graph and ζ the set of all cliques in G. In this paper we introduce the concepts of unique (ζ, ζ)-eccentric clique graphs and self (ζ, ζ)-centered graphs. Certain standard classes of graphs are shown to be self (ζ, ζ)-centered, and we characterize unique (ζ, ζ)-eccentric clique graphs which are self (ζ, ζ)-centered. Keywords: clique graph, graph eccentricity, connected graph.

1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m, respectively. For basic graph theoretic terminology we refer to Harary [3]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. It is known that the this distance function d is a metric on the vertex set V. The eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The set of all vertices for which e is minimized is called the center of G and is denoted by $Z(G)$. The set of all vertices for which e is maximized is called the periphery of G and is denoted by $P(G)$. The concept of the center of a graph arises in the context of selection of a site at which to locate a facility in a graph. Taking into account the situation that the nature of the facility to be constructed could necessitate selecting a structure rather than a vertex to locate a facility, Slater [9]

[^0](C) 2023 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND
proposed four classes of locational problems, namely, vertex-serves-vertex, vertex-serves-structure, structure-serves-vertex and structure-serves-structure. For subsets $S, T \subseteq V$ and any vertex v in V, let $d(v, S)=\min \{d(v, u): u \in S\}$ and $d(S, T)=$ $\min \{d(x, y): x \in S, y \in T\}$, respectively. The degree of a vertex v in a graph G, denoted by d_{v} or deg v, is the number of edges incident with v. Let S be a set and $F=\left\{S_{1}, S_{2}, \ldots, S_{p}\right\}$ a nonempty family of distinct nonempty subsets of S whose union is S. The intersection graph of F is denoted $\Omega(F)$ and defined by $V(\Omega(F))=F$, with S_{i} and S_{j} adjacent whenever $i \neq j$ and $S_{j} \cap S_{j} \neq \phi$. Then a graph G is an intersection graph on S if there exists a family F of subsets of S for which $G \cong \Omega(F)$.

Definition 1.1. [10] Let $G=(V, E)$ be a connected graph. Let $\zeta=\left\{C_{i}: i \in I\right\}$ and $S=\left\{S_{j}: j \in J\right\}$, where each of C_{i} and S_{j} is a subset of V. Let $e_{S}\left(C_{i}\right)=$ $\max \left\{d\left(C_{i}, S_{j}\right): j \in J\right\} ; C_{i}$ is called a (ζ, S)-center if $e_{S}\left(C_{i}\right) \leq e_{S}\left(C_{k}\right)$ for all $k \in I$.

Slater [10] investigated the centrality of paths by taking S to be the collection of all paths in G and ζ to be the collection of all single vertex sets in G, leading to the concepts of the path center, path centroid and path median of G. Let r and d represent respectively the radius and diameter of the graph G. A clique in G is a set S of vertices of G such that the sub graph induced by S is a maximal complete sub graph of G. Throughout the following, let ζ denote the set of all cliques in G. Santhakumaran and Arumugam [5] introduced and studied the concepts of (V, ζ)center, (ζ, V)-center and (ζ, ζ)-center. Santhakumaran [7] introduced the concept of (V, ζ)-periphery, (ζ, V)-periphery and (ζ, ζ)-periphery and investigated their properties.

Definition 1.2. $[5,7]$ Let $G=(V, E)$ be a connected graph. Let $C \in \zeta$ and $v \in V$. We define the vertex-to-clique eccentricity by $e_{1}(v)=\max \{d(v, C): C$ is clique in $G\}$. The clique-to-vertex eccentricity $e_{2}(C)$ is defined by $e_{2}(C)=$ $\max \{d(C, v): v \in V\}$. The clique-to-clique eccentricity $e_{3}(C)$ is defined by $e_{3}(C)=\max \left\{d\left(C, C^{\prime}\right): C^{\prime} \in \zeta\right\}$. The set of all vertices for which $e_{1}(v)$ is minimum is called the (V, ζ)-center of G and is denoted by $Z_{1}(G)$. The set of all vertices for which $e_{1}(v)$ is maximum is called the (V, ζ)-periphery of G and is denoted by $P_{1}(G)$. The set of all cliques C for which $e_{2}(C)$ is minimum is called the (ζ, V) center of G and is denoted by $Z_{2}(G)$. The set of all cliques C for which $e_{2}(C)$ is maximum is called the (ζ, V)-periphery of G and is denoted by $P_{2}(G)$. The set of all cliques C for which $e_{3}(C)$ is minimum is called the (ζ, ζ)-center of G and is denoted by $Z_{3}(G)$. The set of all cliques C for which $e_{3}(C)$ is maximum is called the (ζ, ζ)-periphery of G and is denoted by $P_{3}(G)$.

Santhakumaran and Arumugam [8] also introduced and studied the concepts of (V, ζ)-radius, (V, ζ)-diameter, (ζ, V)-radius, (ζ, V)-diameter, (ζ, ζ)-radius, and (ζ, ζ)-diameter of a graph G.

Definition 1.3. [8] Let $G=(V, E)$ be a connected graph. The (V, ζ)-radius r_{1} of G and the (V, ζ)-diameter d_{1} of G are defined by $r_{1}=\min \left\{e_{1}(v): v \in V\right\}$ and
$d_{1}=\max \left\{e_{1}(v): v \in V\right\}$, respectively. The (ζ, V)-radius r_{2} of G and the (ζ, V) diameter d_{2} of G are defined by $r_{2}=\min \left\{e_{2}(C): C \in \zeta\right\}$ and $d_{2}=\max \left\{e_{2}(C)\right.$: $C \in \zeta\}$, respectively. The (ζ, ζ)-radius r_{3} of G and the (ζ, ζ)-diameter d_{3} of G are defined by $r_{3}=\min \left\{e_{3}(C): C \in \zeta\right\}$ and $d_{3}=\max \left\{e_{3}(C): C \in \zeta\right\}$, respectively.

We observe that for any graph $G, d_{1}=d_{2}$. However r_{1} and r_{2} need not be equal.

Parthasarathy and Nandakumar [4] introduced and studied unique eccentric vertex graphs.

Definition 1.4. [4] A vertex v in a connected graph G is called an eccentric vertex of u if $d(u, v)=e(u)$. A vertex v is called an eccentric vertex if it is an eccentric vertex of some vertex u, and is called a non-eccentric vertex, otherwise. A graph G is called a unique eccentric vertex graph (a u.e.v. graph for short) if $|E(u)|=1$ for every $u \in V(G)$, where $E(u)$ denotes the set of all eccentric vertices of u. The unique eccentric vertex of u is denoted by u^{*}.

Santhakumaran [6] introduced and studied the concept of unique vertex-to-clique eccentric clique graphs.

Definition 1.5. [6] Let G be a connected graph. Any clique C in G for which $e_{1}(v)=d(v, C)$ is called a (V, ζ)-eccentric clique of the vertex v in G. We call a clique C a (V, ζ)-eccentric clique if it is a (V, ζ)-eccentric clique of some vertex v in G. Let $E_{1}(v)$ denote the set of all (V, ζ)-eccentric cliques of v. A graph G is said to be a unique (V, ζ)-eccentric clique graph if $\left|E_{1}(v)\right|=1$ for every vertex v in G.

Santhakumaran [8] introduced the concept of unique clique-to-vertex eccentric vertex graphs and investigated their properties.

Definition 1.6. [8] Let G be a connected graph. Any vertex v in G for which $e_{2}(C)=d(C, v)$ is called a (ζ, V)-eccentric vertex of the clique C in G. We call a vertex v a (ζ, V)-eccentric vertex if it is a (ζ, V)-eccentric vertex of some clique C in G. Let $E_{2}(C)$ denote the set of all (ζ, C)-eccentric vertices of C. A graph G is said to be a unique (ζ, V)-eccentric vertex graph if $\left|E_{2}(C)\right|=1$ for every clique C in G.

A graph G is a self-centered graph if every vertex of G is in the center $Z(G)$ of G.

The following theorem is used in the sequel.

Theorem 1.1. [4] A u.e.v graph G is self-centered if and only if each vertex of G is an eccentric vertex.

Centrality concepts have interesting applications in social networks [1, 2]. In a social network a clique represents a group of individuals having "a common interest" and hence centrality with respect to cliques, unique (ζ, ζ)-eccentric clique graphs and self (ζ, ζ)-centered graphs will have interesting applications in social networks. A (ζ, ζ)-eccentric clique is simply called an eccentric clique and a unique (ζ, ζ) eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

2. Unique Eccentric Clique (u.e.c.) Graphs

Definition 2.1. Let G be a connected graph and let C be a clique in G. Any clique C^{\prime} in G for which $e_{3}(C)=d\left(C, C^{\prime}\right)$ is called a (ζ, ζ)-eccentric clique of the clique C in G. We call a clique C^{\prime} a (ζ, ζ)-eccentric clique if it is a (ζ, ζ)-eccentric clique of some clique C in G. A graph G is said to be a unique (ζ, ζ)-eccentric clique graph if $\left|E_{3}(C)\right|=1$ for every C in ζ, where $E_{3}(C)$ denotes the set of all (ζ, ζ)-eccentric cliques of C. The unique (ζ, ζ)-eccentric clique of G is denoted by C^{*}. A (ζ, ζ)-eccentric clique is simply called an eccentric clique and a unique (ζ, ζ)-eccentric clique graph simply a unique eccentric clique (u.e.c.) graph.

Definition 2.2. A graph G is called a $\operatorname{sel} f(\zeta, \zeta)$-centered graph if every clique of G is in the (ζ, ζ)-center $Z_{3}(G)$ of G.

Figure 2.1: G_{1}
Example 2.1. For the graph G_{1} given in Figure 2.1, the cliques are $C_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$, $C_{2}=\left\{v_{3}, v_{4}\right\}, C_{3}=\left\{v_{4}, v_{5}\right\}$ and $C_{4}=\left\{v_{5}, v_{6}, v_{7}\right\}$. It is easily seen that $e_{3}\left(C_{1}\right)=2$, $e_{3}\left(C_{2}\right)=1, e_{3}\left(C_{3}\right)=1$ and $e_{3}\left(C_{4}\right)=2$. The eccentric cliques of C_{1}, C_{2}, C_{3} and C_{4} are C_{4}, C_{4}, C_{1} and C_{1}, respectively and G_{1} is a u.e.c graph. Also, $Z_{3}\left(G_{1}\right)=\left\{C_{2}, C_{3}\right\}$ and $P_{3}\left(G_{1}\right)=\left\{C_{1}, C_{4}\right\}$.

Figure 2.2: G_{2}
Example 2.2. For the graph G_{2} given in Figure 2.2, the cliques are $C_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}$, $C_{2}=\left\{v_{3}, v_{4}\right\}, C_{3}=\left\{v_{4}, v_{5}\right\}, C_{4}=\left\{v_{5}, v_{6}\right\}$ and $C_{5}=\left\{v_{5}, v_{6}, v_{7}\right\}$. It is easy to see that $e_{3}\left(C_{1}\right)=3, e_{3}\left(C_{2}\right)=2, e_{3}\left(C_{3}\right)=1, e_{3}\left(C_{4}\right)=2$ and $e_{3}\left(C_{5}\right)=3$. Thus $E_{3}\left(C_{3}\right)=\left\{C_{1}, C_{5}\right\}$ and so G_{2} is not a u.e.c graph. Also, $Z_{3}\left(G_{2}\right)=\left\{C_{3}\right\}$ and $P_{3}\left(G_{2}\right)=\left\{C_{1}, C_{5}\right\}$.

Remark 2.1. If C is a (ζ, ζ)-peripheral clique in G, then it is a (ζ, ζ)-eccentric clique in G. However, a (ζ, ζ)-eccentric clique need not be a (ζ, ζ)-peripheral clique. For the graph G_{3} in Figure 2.3, the (ζ, ζ)-eccentricities are written alongside of the edges, $C_{1}=\left\{v_{1}, u_{1}\right\}$ and $C_{2}=\left\{u_{2}, v_{2}\right\}$ are the (ζ, ζ)-peripheral cliques, $C_{3}=\left\{x_{1}, x_{3}\right\}$ and $C_{4}=\left\{y_{1}, y_{2}\right\}$ are (ζ, ζ)-eccentric cliques which are not (ζ, ζ)-peripheral cliques.

A natural question that arises is whether $E_{3}(C) \bigcap P_{3}(G) \neq \phi$ for every C in ζ. However, there are graphs which contain C such that $E_{3}(C) \bigcap P_{3}(G)=\phi$. For the graph G_{3} given in Figure 2.3, $P_{3}\left(G_{3}\right)=\left\{C_{1}, C_{2}\right\}$ and $E_{3}\left(C_{4}\right)=\left\{C_{3}\right\}$. We observe that $\left|P_{3}(G)\right| \geq 2$ for any non-complete graph G.

Figure 2.3: G_{3}
For any connected graph G, the clique graph H of G is the intersection graph of the family of all cliques in G. Thus, the vertices of H are the cliques of G. Two vertices C and D in H are adjacent in H if and only if C and D have a vertex common in G. Two cliques in G are called adjacent if they have a vertex in common. The distance in H is denoted by d_{H}.

The following theorem on the clique graph H of a graph G has several applications in facility location problems in real life situations.

Theorem 2.1. Let G be any connected graph and H its clique graph. Then $d_{H}(C, D)=d(C, D)+1$ for any two cliques C and D in G.

Proof. Let C and D be two cliques in G. Suppose that C and D are adjacent in G. Then $d(C, D)=0$. Now, since C and D are adjacent vertices in $H, d_{H}(C, D)=1$ so that $d_{H}(C, D)=d(C, D)+1$. Now, suppose that C and D are not adjacent in G. Let $d(C, D)=p \geq 1$. Hence there exist vertices $u_{0} \in C$ and $u_{p} \in D$ such that $d\left(u_{0}, u_{p}\right)=p$. Let $P: u_{0}, u_{1}, u_{2}, \ldots, u_{p-1}, u_{p}$ be a shortest $u_{0}-u_{p}$ path in G such that none of the $u_{i}(1 \leq i \leq p-1)$ belongs to C or D. Let C_{i} be a clique
containing the edge $u_{i-1} u_{i}(1 \leq i \leq p)$. Since P is a shortest path in G, the cliques $C, C_{1}, C_{2}, \ldots, C_{p}, D$ are all distinct and $Q: C, C_{1}, C_{2}, \ldots, C_{p}, D$ is a $C-D$ shortest path in H so that $d_{H}(C, D)=p+1=d(C, D)+1$.

Theorem 2.2. Let G be any connected graph and H its clique graph. For any clique C in G, let $e_{H}(C)$ denotes the eccentricity of the vertex C in H. Then
(i) $e_{3}(C)=e_{H}(C)-1$
(ii) $Z_{3}(G)=Z(H)$
(iii) $P_{3}(G)=P(H)$
(iv) $d_{3}=d_{H}-1$
(v) $r_{3}=r_{H}-1$

Proof. (i) By definition $e_{3}(C)=\max \left\{d\left(C, C^{\prime}\right): C^{\prime}\right.$ is a clique in $\left.G\right\}$

$$
=\max \left\{d_{H}\left(C, C^{\prime}\right)-1: C^{\prime} \text { is a vertex in } H\right\}
$$

(by Theorem 2.1)
$=\max \left\{d_{H}\left(C, C^{\prime}\right): C^{\prime}\right.$ is a vertex in $\left.H\right\}-1$
$=e_{H}(C)-1$.
Thus (i) is proved and now (ii) and (iii) follow from the definitions of $Z_{3}(G)$, $Z(H), P_{3}(G)$ and $P(H)$. Also (iv) and (v) follow from (i).

Corollary 2.1. A connected graph G is self (ζ, ζ) - centered if and only if its clique graph H is self-centered.

Theorem 2.3. If C_{1} and C_{2} are two adjacent cliques in a connected graph G, then $\left|e_{3}\left(C_{1}\right)-e_{3}\left(C_{2}\right)\right| \leq 1$.

Proof. We first prove that if u and v are two adjacent vertices in G, then $\mid e(u)-$ $e(v) \mid \leq 1$. Suppose that $e(u) \geq e(v)$. Let u_{1} be an eccentric vertex of u so that $e(u)=d\left(u, u_{1}\right)$. Then $e(u)=d\left(u, u_{1}\right) \leq d(u, v)+d\left(v, u_{1}\right) \leq 1+e(v)$, and so $e(u)-e(v) \leq 1$. It follows that $|e(u)-e(v)| \leq 1$. Now, let H denote the clique graph of G. If C_{1} and C_{2} are two adjacent cliques in G, then C_{1} and C_{2} are two adjacent vertices in H and hence $\left|e_{H}\left(C_{1}\right)-e_{H}\left(C_{2}\right)\right| \leq 1$. Hence by Theorem 2.2(i), $\left|e_{3}\left(C_{1}\right)+1-e_{3}\left(C_{2}\right)-1\right| \leq 1$ so that $\left|e_{3}\left(C_{1}\right)-e_{3}\left(C_{2}\right)\right| \leq 1$.

Theorem 2.4. If C_{1} and C_{2} are two adjacent cliques in a u.e.c graph G and $e_{3}\left(C_{1}\right) \neq e_{3}\left(C_{2}\right)$, then $C_{1}^{*}=C_{2}^{*}$, where C_{1}^{*} and C_{2}^{*} denote respectively the unique eccentric cliques of C_{1} and C_{2}.

Proof. We may assume without loss of generality that $e_{3}\left(C_{1}\right)<e_{3}\left(C_{2}\right)$. Let $\zeta^{\prime}=$ $\zeta-\left\{e_{3}^{*}\left(C_{1}\right)\right\}$. Then $d\left(C_{1}, C_{1}^{*}\right)=e_{3}\left(C_{1}\right)$ and since G is a u.e.c graph, $d\left(C_{1}, C\right) \leq$ $e_{3}\left(C_{1}\right)-1$ for all C in ζ^{\prime}. Since C_{1} and C_{2} are adjacent and $e_{3}\left(C_{1}\right)<e_{3}\left(C_{2}\right)$, it follows that $d\left(C_{2}, C\right) \leq 1+d\left(C_{1}, C\right)$ for all cliques C in G. Hence $e_{3}\left(C_{2}\right)>$ $e_{3}\left(C_{1}\right) \geq d\left(C_{2}, C\right)$ for all C in ζ^{\prime}. Thus $e_{3}\left(C_{1}\right)>d\left(C_{2}, C\right)$ for all C in ζ^{\prime} so that $C_{2}^{*}=C_{1}^{*}$.

Corollary 2.2. In an u.e.c graph, any clique C with $e_{3}(C)=d_{3}-1$ is adjacent to at most one (ζ, ζ) - peripheral clique.

Proof. Suppose that C is adjacent to two distinct (ζ, ζ) - peripheral cliques C_{1} and C_{2}. Since $e_{3}\left(C_{1}\right)=e_{3}\left(C_{2}\right)=d_{3}$ and $e_{3}(C)=d_{3}-1$, it follows from Theorem 2.4 that $C_{1}^{*}=C^{*}=C_{2}^{*}$. Hence $d\left(C^{*}, C_{1}\right)=d\left(C^{*}, C_{2}\right)=d_{3}$ so that C^{*} has two distinct eccentric cliques C_{1} and C_{2}, which is a contradiction.

In the following part, we will give certain classes of graphs which are self (ζ, ζ) centered.

If a graph G is complete, then G is the only clique of G and $e_{3}(G)=0$ so that G is self (ζ, ζ) - centered. If G is an even cycle $C_{2 p}(p \geq 2)$, then $e_{3}(C)=p-1$ for any clique C in G. If G is an odd cycle $C_{2 p+1}(p \geq 2)$, then again $e_{3}(C)=p-1$ for any clique C in G. If $G=C_{3}$, then $e_{3}(G)=0$. Hence every cycle is self (ζ, ζ)-centered.

Theorem 2.5. Any complete bipartite graph $G=K_{p, q}$ is self (ζ, ζ)-centered.
Proof. If G is a star, then each clique C is an edge and since $e_{3}(C)=0$, it follows that $Z_{3}(G)=\zeta$ so that G is self (ζ, ζ)-centered. It G is not a star, let the partite sets of G be $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}, p>1$ and $q>1$. Then any clique C in G is of the form $C=x_{i} y_{j}(1 \leq i \leq p$ and $1 \leq j \leq q)$ and $e_{3}(C)=1$. Hence $Z_{3}(G)=\zeta$ so that G is self (ζ, ζ) - centered.

Remark 2.2. For a bipartite graph G, Theorem 2.5 is not true. For the graph G_{4} given in Figure 2.4, $Z_{3}\left(G_{4}\right)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{6}, v_{7}\right\},\left\{v_{3}, v_{6}\right\}\right\}$ and so G_{4} is not self (ζ, ζ)-centered.

Figure 2.4: G_{4}

Theorem 2.6. If G is a connected graph such that every pair of cliques in G has a common vertex, then G is self (ζ, ζ)-centered.

Proof. Since $d\left(C, C^{\prime}\right)=0$ for any two cliques C and C^{\prime}, it follows that $e_{3}(C)=0$ for any clique C in G. Thus $Z_{3}(G)=\zeta$ so that G is $\operatorname{self}(\zeta, \zeta)$ - centered.

Corollary 2.3. If G is a graph with n vertices and maximum degree $\Delta=n-1$, then G is self (ζ, ζ) - centered.

Proof. Let $S=\{v \in V: \operatorname{deg} v=n-1\}$. Since $S \subseteq C$ for any clique C, the result follows.

The following theorem gives a characterization for a u.e.c graph to be self (ζ, ζ) centered.

Theorem 2.7. A u.e.c graph is self (ζ, ζ)-centered if and only if each clique of G is eccentric.

Proof. Let G be a self (ζ, ζ)-centered graph. For any clique C in G, let C^{*} be an eccentric clique of C so that $e_{3}\left(C^{*}\right)=e_{3}(C)=d\left(C^{*}, C\right)$. Hence C is an eccentric clique of C^{*}. Thus each clique of G is eccentric.

Let G be a u.e.c graph. Suppose that each clique of G is eccentric. First, we prove that every vertex of H is eccentric in H. Let C be any vertex of H. Then C is a clique in G. Since each clique of G is eccentric, there exists a clique C_{1} in G such that $e_{3}\left(C_{1}\right)=d\left(C_{1}, C\right)$. By Theorem 2.2(i), $e_{H}\left(C_{1}\right)-1=d_{H}\left(C_{1}, C\right)-1$ and so $e_{H}\left(C_{1}\right)=d_{H}\left(C_{1}, C\right)$. Thus every vertex in H is eccentric. Now, we prove that H is u.e.v graph. Let C be a vertex in H having two distinct eccentric vertices, say C_{1} and C_{2}. Then $e_{H}(C)=d_{H}\left(C, C_{1}\right)=d_{H}\left(C, C_{2}\right)$. By Theorems 2.1 and 2.2(i), $e_{3}(C)+1=d\left(C, C_{1}\right)+1=d\left(C, C_{2}\right)+1$, which gives $e_{3}(C)=d\left(C, C_{1}\right)=d\left(C, C_{2}\right)$ so that C_{1} and C_{2} are two distinct eccentric cliques of C in G, contradicting the hypothesis that G is a u.e.c graph. Thus H is a u.e.v graph such that every vertex in H is an eccentric vertex. Hence by Theorem 1.1, H is self centered. By Corollary 2.1, G is self (ζ, ζ) - centered.

Corollary 2.4. A u.e.c graph G is self (ζ, ζ) - centered if and only if $C^{* *}=C$ for every clique C in G.

Proof. Suppose that G is self (ζ, ζ) - centered. In a self (ζ, ζ) - centered graph, C^{*} is an eccentric clique of C if and only if C is an eccentric clique of C^{*}. Hence it follows that $C^{* *}=C$ for every clique C in G. Conversely, suppose that $C=C^{* *}$ for every clique C in G. Then C is the unique eccentric clique of C^{*}. Thus $e_{3}\left(C^{*}\right)=d\left(C^{*}, C\right)$ so that each clique C in G is eccentric. Hence by Theorem 2.7, G is self (ζ, ζ) centered.

Characterizing all self (ζ, ζ) - centered graphs seems to be a very difficult problem and we leave it as an open question.

Problem 2.1. Characterize self (ζ, ζ) - centered graphs.

REFERENCES

1. L. C. Freeman: A set of measures f centrality based on be-tween-ness, Sociometry 40 (1977), 35-41.
2. L. C. Freeman: Centrality in Social networks: 1. Conceptual clarification, Social Networks, 1 (3) (1978-79), 215-239.
3. F. Harary: Graph Theory, Addison-Wesley Reading MA (1969).
4. K. R. Parthasarathy and R. Nandakumar: Unique eccentric point graphs, Discrete Mathematics 46 (1983), 69-74.
5. A. P. Santhakumaran and S. Arumugam: Centrality with respect to cliques, International Journal of Management and Systems Vol. 18 No. 3 (2002), 275-280.
6. A. P. SANTHAKUMARAN: Unique vertex-to-clique eccentric clique graphs, Bulletin of Pure and Applied Sciences Vol. 24E No. 1 (2005), 167-172.
7. A. P. Santhakumaran: Periphery with respect ot clique in graphs, Journal of Discrete Mathematical sciences and Cryptography, 2 (2007), 245-254.
8. A. P. Santhakumaran and S. ARUMUGAM: Radius and diameter with respect to cliques in graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 72 (2010), 231-241.
9. P. J. Slater: Centrality of paths and vertices in a graph: Cores and Pits, Theory and applications of graphs, Ed. G. Chartrand, John Wiley (1981) 529-542.
10. P. J. Slater: Some definitions of Central Structures, In: Koh, K.M., Yap, H.P. (eds) Graph Theory Singapore 1983. Lecture Notes in Mathematics, vol 1073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073115.

[^0]: Received December 17, 2020, accepted: December 31, 2022
 Communicated by Marko Petković
 Corresponding Author: A. P. Santhakumaran, Former Professor, Department of Mathematics, Hindustan Institute of Technology and Science, Chennai-603 103, India | E-mail: apskumar1953@gmail.com
 2010 Mathematics Subject Classification. 05C12

