9 research outputs found

    TwinEQTL: ultrafast and powerful association analysis for eQTL and GWAS in twin studies

    Get PDF
    We develop a computationally efficient alternative, TwinEQTL, to a linear mixed-effects model for twin genome-wide association study data. Instead of analyzing all twin samples together with linear mixed-effects model, TwinEQTL first splits twin samples into 2 independent groups on which multiple linear regression analysis can be validly performed separately, followed by an appropriate meta-analysis-like approach to combine the 2 nonindependent test results. Through mathematical derivations, we prove the validity of TwinEQTL algorithm and show that the correlation between 2 dependent test statistics at each single-nucleotide polymorphism is independent of its minor allele frequency. Thus, the correlation is constant across all single-nucleotide polymorphisms. Through simulations, we show empirically that TwinEQTL has well controlled type I error with negligible power loss compared with the gold-standard linear mixed-effects models. To accommodate expression quantitative loci analysis with twin subjects, we further implement TwinEQTL into an R package with much improved computational efficiency. Our approaches provide a significant leap in terms of computing speed for genome-wide association study and expression quantitative loci analysis with twin samples

    Evaluation Of Differential Protein Expression In Haliclona Aquarius And Sponge-associated Microorganisms Under Cadmium Stress

    No full text
    A comparative proteomic approach was used to assess differentially expressed proteins in marine sponges after 36 h of exposure to cadmium (Cd). After separation performed by 2-D polyacrylamide gel electrophoresis, 46 protein spots indicated differential expression, and 17 of these proteins were identified by electrospray ionization quadrupole time-of-flight mass spectrometry. From the proteins identified, 76 % were attributed to sponge-associated microorganisms (fungi and bacteria), and 24 % were attributed to Haliclona aquarius. Some of the proteins that were identified may be related to cell proliferation and differentiation or processes of oxidative stress repair and energy procurement. An integrated evaluation based on spot expression levels and the postulated functions of these proteins allowed a more accurate evaluation of the stress caused to the sponge holobiont system by cadmium exposure. This study could provide new insights into the use of a proteomic approach in the marine sponge to assess the effects of Cd pollution in a marine environment. © 2013 Springer-Verlag Berlin Heidelberg.4052476617670Hansen, I.V., Weeks, J.M., Depledge, M.H., (1995) Mar Pollut Bull, 31, pp. 133-138. , 10.1016/0025-326X(94)00228-2 1:CAS:528:DyaK2MXnvFCntrg%3DSchröder, H.C., Hassanein, H.M., Lauenroth, S., Koziol, C., Mohamed, T.A., Lacorn, M., Steinhart, H., Müller, W.E., (1999) Arch Environ Contam Toxicol, 36, pp. 47-55. , 10.1007/s002449900441Waisberg, M.P., Joseph, B., Beyersmann, H.D., (2003) Toxicology, 192, pp. 95-117. , 10.1016/S0300-483X(03)00305-6 1:CAS:528:DC%2BD3sXot1Kjt7w%3DHuang, X., Fang, C.-W., Guo, Y.-W., Huang, H.-Q., (2011) Ecotox Environ Saf, 74, pp. 1232-1237. , 10.1016/j.ecoenv.2011.02.005 1:CAS:528:DC%2BC3MXnsVClt78%3DMartín-Díaz, M.L., Blasco, J., Sales, D., Delvalls, T.A., (2004) Trends Anal Chem, 23, pp. 10-11Lafi, F.F., Garson, M.J., Fuerst, J.A., (2005) Microb Ecol, 50, pp. 213-220. , 10.1007/s00248-004-0202-8 1:CAS:528:DC%2BD2MXht1Gru7vMLee, K.Y., Lee, J., Lee, H.K., (2001) J Microbiol, 39, pp. 254-264Taylor, M.W., Radax, R., Steger, D., Wagner, M., (2007) Microbiol Mol Biol R, 71, pp. 295-347. , 10.1128/MMBR.00040-06 1:CAS:528:DC%2BD2sXotV2gu7w%3DViarengo, A., Ponzano, E., Dondero, F., Fabbri, R.A.A., (1997) Mar Environ Res, 44, pp. 69-84. , 10.1016/S0141-1136(96)00103-1 1:CAS:528:DyaK2sXisVKqtrY%3DBradford, M.M., (1976) Anal Biochem, 72, pp. 248-254. , 10.1016/0003-2697(76)90527-3 1:CAS:528:DyaE28XksVehtrY%3DBerkelman, T., Stenstedt, T., (1998) 2-D Electrophoresis - Principles and Methods, , Amersham Biosciences UppsalaLing, X.P., Zhua, J.-Y., Huanga, L., Huang, H.-Q., (2009) Environ Toxicol Phar, 27, pp. 212-218. , 10.1016/j.etap.2008.10.004 1:CAS:528:DC%2BD1MXitFSlsbc%3DZhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G., (2008) Anal Chim Acta, 606, pp. 135-150. , 10.1016/j.aca.2007.11.018 1:CAS:528:DC%2BD2sXhsVeqt7nIAmiard, J.-C., Amiard-Triquet, C., Barka, S., Pellerin, J., Rainbow, P.S., (2006) Aquat Toxicol, 76, pp. 160-202. , 10.1016/j.aquatox.2005.08.015 1:CAS:528:DC%2BD28Xjsl2qug%3D%3DErk, M., Ivankovic, D., Raspor, B., Pavicic, J., (2002) Talanta, 57, pp. 1211-1218. , 10.1016/S0039-9140(02)00239-4 1:CAS:528:DC%2BD38XkvFKisLk%3DGeret, F., Rainglet, F., Cosson, R.P., (1998) Mar Environ Res, 46, pp. 545-550. , 10.1016/S0141-1136(97)00106-2 1:CAS:528:DyaK1cXmtVOhs7c%3DMuralidharan, S., Thompson, E., Raftos, D., Birch, G., Haynes, P.A., (2012) Proteomics, 12, pp. 906-921. , 10.1002/pmic.201100417 1:CAS:528:DC%2BC38XmtFajsr4%3DLeung, P.T., Wang, Y., Maka, S.S., Ng, W.C., Leung, K.M., (2011) Aquat Toxicol, 105, pp. 49-61. , 10.1016/j.aquatox.2011.05.010 1:CAS:528:DC%2BC3MXptVyjtbw%3DLeón, I.R., Neves-Ferreira, A.G., Valente, R.H., Mota, E.M., Lenzi, H.L., Perales, J., (2007) J Mass Spectrom, 42, pp. 1363-1374. , 10.1002/jms.1324Regoli, F., Cerrano, C., Chierici, E., Bompadre, S., Bavestrello, G., (2000) Mar Biol, 137, pp. 453-461. , 10.1007/s002270000369 1:CAS:528:DC%2BD3cXos12jt7o%3DPribyl, P., Cepák, V., Zachleder, V., (2005) Protoplasma, 226, pp. 231-240. , 10.1007/s00709-005-0123-5 1:CAS:528:DC%2BD2MXht1yktbzKLacoue-Labarthe, T., Bihan, L., Borg, D., Koueta, N., Bustamante, P., (2010) ICES J Mar Sci, 67, pp. 1517-1523Yan, J., Wang, J., Zhang, H., (2002) Plant J, 29, pp. 193-202. , 10.1046/j.0960-7412.2001.01205.x 1:CAS:528:DC%2BD38XhvF2qtLc%3DHongsthong, A., Sirijuntarut, M., Yutthanasirikul, R., Senachak, J., Kurdrid, P., Cheevadhanarak, S., Tanticharoen, M., (2009) Prot Sci, 7, pp. 33-52. , 10.1186/1477-5956-7-33Morin, S., Vivas-Nogues, M., Duong, T.T., Boudou, A.M., Delmas, F., (2007) Fund Appl Limnol, 168, pp. 179-187. , 10.1127/1863-9135/2007/0168-0179 1:CAS:528:DC%2BD2sXltFSrurw%3DRice-Evans, C.A., Miller, N.J., (1996) Biochem Soc Trans, 24, pp. 790-795. , 1:CAS:528:DyaK28XlslSgu74%3DJayaraman, J., Namasivayam, N., (2011) Fund Clin Pharmacol, 25, pp. 682-689. , 10.1111/j.1472-8206.2010.00899.x 1:CAS:528:DC%2BC3MXhsVCqsLrLCao, Z., Song, P., Xu, Q., Su, R., Zhu, G., (2011) FEMS Microbiol Lett, 320, pp. 9-14. , 10.1111/j.1574-6968.2011.02287.x 1:CAS:528:DC%2BC3MXnvFCnsb4%3DDecorosi, F., Lori, L., Santopolo, L., Tatti, E., Giovannetti, L., Viti, C., (2011) Res Microbiol, 162, pp. 747-755. , 10.1016/j.resmic.2011.06.014 1:CAS:528:DC%2BC3MXht1KmtL7KGupta, D.K., Sandalio, L.M., (2012) Metal Toxicity in Plants: Perception, Signaling and Remediation, , Springer Germany 10.1007/978-3-642-22081-

    Pedagogia dell'ambiente 2017 Tra sviluppo umano e responsabilit\ue0 sociale

    No full text
    Tra controversie e ambiguit\ue0 di diverso genere, la cultura della sostenibilit\ue0 rappresenta una forma di capitale sociale che indica il grado di coesione civica, la natura dei rapporti di collaborazione istituzionale, l'ampiezza e la profondit\ue0 dei legami di solidariet\ue0. Le questioni ambientali hanno assunto negli ultimi anni crescente rilevanza pubblica e occupazionale. Non sorprende che un gruppo della Societ\ue0 Italiana di Pedagogia sia dedicato ai temi della Pedagogia dell'Ambiente, dello Sviluppo Umano, della Responsabilit\ue0 sociale. Pedagogia dell'ambiente 2017 designa un'area di aspettative pubbliche e un luogo di partecipazione, di responsabilit\ue0 sociale ed economica, di intrapresa tecnologica. Apprendere ed insegnare, innovare e competere richiedono orientamenti valoriali ed azioni responsabili. \uc8 in gioco una pedagogia militante ed emancipativa, per vivere il benessere ed educare alla qualit\ue0 della vita

    Sediment metal enrichment and ecological risk assessment of ten ports and estuaries in the World Harbours Project

    No full text
    Ten global harbours were assessed for sediment quality by quantifying the magnitude of anthropogenic change and ecological risk. Anthropogenic change (enrichment) was high for Derwent River and Sydney estuary, moderate for Santander Harbour, Rio de Janeiro and Dublin Port, slight for Hong Kong, minimal for Darwin. All 10 enrichment indices used showed similar results. Derwent River sediment was rated at high ecological risk, followed by Sydney and Santander estuaries with moderate risk. Auckland and Darwin sediments exhibited minimal ecological risk and sediment in the remaining harbours (Dublin, Hong Kong, Ravenna, Ria de Vigo and Rio de Janeiro) were assessed at slight ecological risk. The extraordinary variety of environments and types/quantities/qualities of data investigated resulted in as much a critique and development of methodology, as an assessment of human impact, including unique techniques for elemental normalisation and contaminant classification. Recommendations for an improved technical framework for sediment quality assessment are provided

    Sediment metal enrichment and ecological risk assessment of ten ports and estuaries in the World Harbours Project

    No full text
    Ten global harbours were assessed for sediment quality by quantifying the magnitude of anthropogenic change and ecological risk. Anthropogenic change (enrichment) was high for Derwent River and Sydney estuary, moderate for Santander Harbour, Rio de Janeiro and Dublin Port, slight for Hong Kong, minimal for Darwin. All 10 enrichment indices used showed similar results. Derwent River sediment was rated at high ecological risk, followed by Sydney and Santander estuaries with moderate risk. Auckland and Darwin sediments exhibited minimal ecological risk and sediment in the remaining harbours (Dublin, Hong Kong, Ravenna, Ria de Vigo and Rio de Janeiro) were assessed at slight ecological risk. The extraordinary variety of environments and types/quantities/qualities of data investigated resulted in as much a critique and development of methodology, as an assessment of human impact, including unique techniques for elemental normalisation and contaminant classification. Recommendations for an improved technical framework for sediment quality assessment are provided
    corecore