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Abstract

We develop a computationally efficient alternative, TwinEQTL, to a linear mixed-effects model for twin genome-wide association study
data. Instead of analyzing all twin samples together with linear mixed-effects model, TwinEQTL first splits twin samples into 2 independent
groups on which multiple linear regression analysis can be validly performed separately, followed by an appropriate meta-analysis-like ap-
proach to combine the 2 nonindependent test results. Through mathematical derivations, we prove the validity of TwinEQTL algorithm
and show that the correlation between 2 dependent test statistics at each single-nucleotide polymorphism is independent of its minor al-
lele frequency. Thus, the correlation is constant across all single-nucleotide polymorphisms. Through simulations, we show empirically that
TwinEQTL has well controlled type I error with negligible power loss compared with the gold-standard linear mixed-effects models. To ac-
commodate expression quantitative loci analysis with twin subjects, we further implement TwinEQTL into an R package with much im-
proved computational efficiency. Our approaches provide a significant leap in terms of computing speed for genome-wide association
study and expression quantitative loci analysis with twin samples.
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Introduction
For complex psychiatric disorders, such as schizophrenia and
major depressive disorder, twin studies have received attention
for establishing the general extent to which genes and environ-
ment are etiologically important (Neale and Cardon 1992;
Boomsma et al. 2002; Silventoinen et al. 2003; Vaccarino et al.
2008; Chou et al. 2009; Park et al. 2012). Typical twin data include
both monozygotic twins (MZ) and dizygotic twins (DZ), plus un-
paired individual twins (singletons). Unlike data with indepen-
dent samples, twin data require more careful statistical modeling
since ignoring genetic relatedness and shared environment
among twin pairs may lead to high false and/or low true positive
findings. Several statistical approaches are available for twin
data. One of the most common approaches is the linear mixed-
effects model (LMM) where random effects are used to properly
account for the correlations among subjects (Carlin et al. 2005;
Wang et al. 2011; Kuna et al. 2012). Mixed-effects model have a
well-established theory which is familiar to statisticians.

Moreover, it is conveniently implemented in most statistical soft-
ware and can flexibly adjust other nongenetic and genetic covari-
ates (Ghazalpour et al. 2008; Rabe-Hesketh et al. 2008). Although
single GWAS analysis using LMM is feasible by high performance
computing (HPC), GWAS analysis of multiple traits such as ex-
pression quantitative loci (eQTL) studies where associations be-
tween thousands of transcripts and millions of single nucleotide
polymorphisms (SNPs) are tested, mixed-effects models are ex-
tremely computationally inefficient if not practically impossible.
The BOLT-LMM algorithm (Loh et al. 2015) rapidly computes sta-
tistics for association between phenotype and genotypes using an
LMM by assuming a Bayesian mixture-of-normals prior for the
random effect attributed to SNPs other than the one being tested,
which provides an opportunity for increased power to detect
associations while controlling false positives. However, it is only
recommended to be used for human genetic datasets containing
more than 5,000 samples. MatrixEQTL is an ultrafast R package
for genome-wide association study with genetically unrelated
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subjects (Shabalin 2012) and it is not readily applicable to twin
eQTL data. Previously, we have developed fast eQTL analysis
method which use a score statistic that automatically adjusts the
(hidden) correlation between the 2 correlated groups (Yin et al.
2015). However, this method requires reanalyzing the original
data using HPC clusters.

A meta-analysis procedure, which uses only the SNP level
GWAS summary statistics, is a popular approach for combining
analysis results from multiple studies to increase power for
detecting association findings. Meta-analysis has been used to in-
tegrate several GWAS studies (Evangelou and Ioannidis 2013)
from multiple international institutes, and to GWAS of schizo-
phrenia (Ripke et al. 2013, 2014), type 2 diabetes (Zeggini et al.
2008), polygenic dyslipidemia (Kathiresan et al. 2009), height
(Allen et al. 2010), etc. It has also been mathematically and nu-
merically proved that there is no efficiency gain in performing
mega-analysis where full data with all individual level data are
analyzed vs meta-analysis where only summarized test statistics
are combined (Lin and Zeng 2010a, 2010b), which further popu-
larizes the application of meta-analysis in GWAS. However, tradi-
tional meta-analysis requires independent studies without
overlapping subjects or family members. For studies with over-
lapping subjects, it has been shown that failure to take the over-
lapping into consideration can lead to inflated type I errors and
proper meta-analysis procedures are needed (Lin and Sullivan
2009). More recently, a meta-analysis of correlated traits method
was proposed by Zhu et al. (2015), whose approach integrates cor-
related subjects and correlated traits in the same meta-analysis
framework using 2 alternative approaches, SHom for homoge-
neous traits and SHet for heterogeneous traits. According to the
homogeneous assumption, SHom can be directly applied to stud-
ies with correlated subjects such as twins where the correlation
of test statistics is estimated empirically by Pearson’s correlation
coefficient. However, the difference of correlation structures in
MZ, DZ, and singleton are ignored and approximated, which
could lead to power loss that cannot be afforded for large-scale
twin GWAS and eQTL studies. Up to our best knowledge, no
meta-analysis method has been specifically designed for ele-
gantly modeling twin structures in eQTL and GWAS studies while
reducing computational cost and keeping statistical power as
high as using LMM. Cheung (2014, 2018) adapted a structure
equation modeling approach to model complicated variance–co-
variance structure among correlated traits or subjects, which can
also be applied to GWAS studies with twins. However, it is always
a judgment call to check the assumption of homogeneity or het-
erogeneity of variance–covariance matrix.

In this study, we propose a computationally efficient and
statistical powerful approach in twin GWAS/eQTL analysis,
TwinEQTL, that boosts the computing efficiency from thou-
sands of folds (Yin et al. 2015) to 10,000 folds compared with
LMM. Similar to previous approach (Zhu et al. 2015), TwinEQTL
algorithm was derived by adjusting variance–covariance struc-
ture in the meta-analysis model when combining correlated
test statistics. In addition, by modeling the difference of corre-
lation structures in MZ and DZ pairs, the correlation between
test statistics can be more accurately estimated using only 1
run of LMM per phenotype, without iterating all the combina-
tions of both phenotype and SNPs. Furthermore, TwinEQTL is
implemented in a fashion similar to the currently one of the
fastest engines for GWAS, MatrixEQTL, while taking the corre-
lation structure of both MZ and DZ twins into consideration by
mimicking meta-analysis procedure in GWAS. In TwinEQTL
pipeline, we first split twin pairs and singletons into 2

independent sets, so that within each set the samples are unre-
lated and a linear regression is performed separately for each
set. We then combine the 2 nonindependent test statistics
through a meta-analysis where the correlation between the 2
sets of results is adjusted. Our method avoids the iterative use
of LMM with substantially reduced computing time. When
Pearson’s correlation coefficient is used to empirically approxi-
mate the correlation between test statistics, TwinEQTL is
equivalent to SHom at the cost of power loss in many scenarios
according to simulations. We performed a series of simulations
to demonstrate that TwinEQTL is robust to various correlation
structures in twin samples while maintaining superior statisti-
cal power compared with competing methods.

Materials and methods
TwinEQTL without covariates
We describe the method first assuming no covariates exist.
Extension to situations where one or more covariates exist will
be discussed later. Suppose for a given GWAS, there are nMZ

pairs of MZ, nDZ pairs of DZ, and nSg singletons. The total sam-
ple size n ¼ 2 � nMZ þ 2 � nDZ þ nSg. First, we randomly split each
twin pair into 2 groups, named group 1 and group 2. We then
randomly divide the singletons into half and assign them to
group 1 and group 2 separately. Samples in groups 1 and 2 are
ordered in such a way that the first nMZ samples in groups 1
and 2 are the paired MZ samples, and the nDZ samples are the
paired DZ samples, and the remaining samples are singletons.
Now for samples within group k (k¼ 1, 2), they are genetically
unrelated, on which the simple linear model below can be per-
formed between a given SNP and the trait:

yik ¼ lk þ bgik þ �ik; (1)

where gik and yik are the corresponding genotype and phenotype
of subject i ði ¼ 1; . . . ; nkÞ in group k, and the random error
�ik � Nð0; r2

kÞ. For simplification, we assume that both y and g are
standardized to have mean 0 and variance 1 within each group.
Under null hypothesis (H0), there is no association between a
given SNP and responses (H0 : b ¼ 0) in each subset.

The maximal likelihood estimate (MLE) of bb from each dataset
k (k¼ 1, 2) therefore equals

bbk ¼
Pnk

i¼1ðgik � gk Þðyik � yk ÞPnk
i¼1 ðgik � gk Þ2

¼
Pnk

i¼1 yikgik

nk � 1
: (2)

The correlation between �i1 and �j2 is

Corrð�i1 ; �j2 Þ ¼
qDZ; subjects i and j are a DZ pair
qMZ; subjects i and j are a MZ pair
0; subjects i and j are unrelated;

8<: (3)

according to the common ACE model (Neale and Cardon 1992) for
twin data. Here

qDZ ¼
1
2

r2
a þ r2

c

� �
= r2

a þ r2
c þ r2

e

� �
and

qMZ ¼ ðr2
a þ r2

c Þ=ðr2
a þ r2

c þ r2
e Þ

with r2
a being the additive genetic effect (A), r2

c being the shared
common environment effect (C), and r2

e being the unique envi-
ronment effect (E).



The derived metatest statistic (Appendix) can be expressed as

Z ¼ T1 þ T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 2CorrðT1;T2Þ

p ; (4)

where CorrðT1;T2Þ ¼ ðnDZqDZ þ 2nMZqMZÞ=n, which is the analytic
correlation between T1 and T2, where T1 and T2 are the corre-
sponding t-tests from the group 1 and group 2 data, respectively.

Under H0 : Z � Nð0; 1Þ.
In Appendix, we have proved that for a given SNP, the corre-

lation between the 2 t statistics, T1 and T2, only depends on
qMZ, qDZ and the numbers of DZ, MZ pairs, and singletons, and

is independent of the minor allele frequency (MAF) of the SNP.
Thus, the correlation is constant across all SNPs. To estimate

the qMZ and qDZ, we fit the following ACE model with all sam-
ples

varðyÞ ¼ r2
a þ r2

c þ r2
e (5)

and estimate r2
a; r2

c , and r2
e , respectively, based on which, we esti-

mate CorrðT1;T2Þ analytically as dCorrðT1;T2Þ ¼ ðnDZbqDZ þ
2nMZbqMZÞ=n with bqDZ ¼ 0:5br2

a þ br2
c and bqMZ ¼ br2

a þ br2
c .

Alternatively, Zhu et al. (2015) proposed to empirically estimate
CorrðT1;T2Þ by the sample correlation of T1 and T2 across all tested
SNPs. As the number of SNPs can be large for modern GWAS data,
we may choose to calculate the sample correlation of T1 and T2

across a few thousands of randomly selected SNPs. The perfor-
mance of both methods was evaluated through simulations.

Table 1. Type I errors of twin data using LM, LMM, and TwinEQTL.

a ¼ 0:01 a ¼ 0:001 a ¼ 0:0001

a2 c2 LM LMM SHom TwinEQTL LM LMM SHom TwinEQTL LM LMM SHom TwinEQTL

0 0 0.010 0.010 0.010 0.009 0.0009 0.0010 0.0010 0.0009 0.00008 0.00009 0.00008 0.00007
0.2 0.1 0.018 0.010 0.010 0.010 0.0024 0.0009 0.0010 0.0010 0.00029 0.00009 0.00009 0.00009
0.5 0.1 0.027 0.010 0.010 0.010 0.0045 0.0010 0.0010 0.0010 0.00076 0.00009 0.00010 0.00010
0.7 0.2 0.037 0.010 0.010 0.010 0.0077 0.0010 0.0010 0.0010 0.00161 0.00009 0.00010 0.00010
0.9 0 0.036 0.010 0.010 0.010 0.0073 0.0009 0.0010 0.0010 0.00149 0.00009 0.00010 0.00010
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Fig. 1. Distributions of P-value under H0 for different scenarios of a2 and c2. The comparisons of distributions of P-value under different scenarios of
additive genetic effect (a2) and shared environment effect (c2) using linear model (top panel), LMM (middle panel) and TwinEQTL (bottom panel). For
linear model method, both subjects in each twin pair and all the singletons were used ignoring correlation structure within each twin pair. The number
of MZ and DZ are balance (nMZ ¼ nDZ ¼ 500) and the number of singletons are relatively small (nSg ¼ 100) in this case.



TwinEQTL with covariates
As discussed in Shabalin (2012), the multiple linear regression
can be reduced to simple linear regression when testing for the
SNP effect by regressing the response variable and the SNP geno-
types relative to the other covariates, from which the residuals
are obtained and used for the subsequent simple linear regres-
sion. Following the similar argument, we can show that the corre-
lation between the 2 sets of t statistics will be constant across all
SNPs and is independent of the MAF of each SNP, when the

covariates and the SNP genotypes are not correlated, which

should be true for most of the SNPs, or approximately true for all

SNPs.

Linear mixed-effect model
LMM is considered as a gold standard for analyzing twin data and

multivariate phenotypes. In this paper, we compare the perform-

ances of the proposed method with LMM. For twin data, we

implemented LMM as described in Wright et al. (2014) which
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Fig. 2. Power estimations for twin data with different scenarios of a2 and c2. The power analysis at significance level of a ¼ 5� 10�8 under different
scenarios of sample size, effect size, additive genetic effect (a2), and shared environmental effect (c2). For linear model method, only one subject per
twin pair and all the singletons were used in the regression model. The left panel shows the estimated power under circumstance that the number of
MZ and DZ are balance (nMZ ¼ nDZ ¼ 500 and nSg ¼ 100). The right panel shows the estimated power under circumstance that the number of MZ and DZ
are imbalance (nMZ ¼ 100, nDZ ¼ 900, and nSg ¼ 100)



distinguishes MZ and DZ twins by considering additive genetic ef-
fect (A), shared environment effect (C), and unique environment
effect [aka the ACE model (Neale and Cardon 1992)].

GWAS of brain volume in neonates
The GWAS study of early brain development study (EBDS) at
UNC-Chapel Hill was to investigate how genetic variation
impacts prenatal and early postnatal brain development of global
brain tissue volumes in a unique cohort of infants who received
high-resolution MRI scans of the brain around 5 weeks of age (Xia
et al. 2017).

The SNP genotypes were generated from Affymetrix Axiome
World Array 4.0 on 852 infants with their buccal samples. A total
of 756 infants and 854,979 SNPs were obtained after the following
quality control steps [see more details in Xia et al. (2017)]: we ex-
cluded samples with low DishQC (<0.82), low call rates (<95%),
outliers for homozygosity, sex, or zygosity from genotypes incon-
sistent with reported phenotypes, ancestry outliers, excessive re-
latedness, and unexpected relatedness. We removed individual
SNPs that deviated from Hardy–Weinberg equilibrium (HWE)
(PHWE < 1 � 10�8), had low call rate (<95%), high Mendelian er-
ror rate (>0.1, based on 5 parent–child trios), high deviation of al-
lele frequency compared with European American and African
American subsets from the 1000 Genomes Project. Imputation
was performed with MACH-Admix using the 1000 Genomes
Project (1000G) reference panel (phase1 release v3.20101123). To
evaluate the quality of imputed SNPs, we computed mean R2 for
varying MAF categories and R2 cutoffs. We retained SNPs with
mean R2 > 0:8 and excluded SNPs with MAF < 0.01. A total of 561
infants (300 male, 261 female) between 0 and 24 weeks of age,
encompassing 295 singletons or unpaired twins, 17 sibling pairs
and 232 twins [61 same-sex dizygotic (DZ) pairs, 37 same-sex
monozygotic (MZ) pairs and 18 opposite-sex DZ pairs]. Overall,
63% of subjects are Europeans with remaining subjects being pri-
marily Africans. The MRI measurements of brain volume include
white matter (WM), intracranial volume (ICV), gray matter (GM),
and total cerebrospinal fluid (CSF).

The genome-wide association analysis using linear regression
is not valid due to the correlation among twins. Instead, the LMM
was used in the original study by utilizing HPC cluster. The first 3
genotypic principal components (PCs) were included as covari-
ates to control for population stratification, so was scanner type
to control for potential scanner bias. ICV was included as a covar-
iate for GM, WM, and CSF. Additional covariates were selected via
adaptive LASSO from a comprehensive set of demographic and
medical history variables (Xia et al. 2017) including birth weight,
gestational age at birth, sex, and age at MRI.

Netherlands Twin Registry eQTL Study
In Netherlands Twin Registry (NTR) twin study (dbGaP study ac-
cession number: phs000486.v1.p1), 2,752 individuals had their
SNP genotypes and gene expression data measured (Wright et al.
2014) on Affymetrix Genome-Wide Human SNP Array 6.0 and
Affymetrix u219 array, respectively. One of the goals of this proj-
ect is to identify a comprehensive list of eQTL in peripheral blood
and their biological significance. After a series of quality control
steps described previously in Wright et al. (2014), a total of
642,489 autosomal SNPs and 47,495 transcripts on 2,561 individu-
als were kept for the eQTL analysis, which include 641 MZ pairs,
564 DZ pairs, and 151 singletons. A total of 16 covariates includ-
ing the age at blood sampling, sex, smoking status, body mass in-
dex, hematocrit count, hemoglobin count and total white and red
cell counts, 5 PCs from the gene expression data, and 3 PCs

derived from the pruned genotype data are also included as

covariates.

Results
Simulation studies
For simulation analysis, genotypes of MZ and DZ twins were sim-

ulated with the following manners: For a given SNP, its MAF was

first sampled from a uniform distribution of Uð0:05; 0:5Þ. Then for

each twin pair, 2 maternal alleles and 2 paternal alleles were in-

dependently and randomly generated from the Bernoulli distri-

bution with the sampled MAF. If the twin pair is an MZ pair, their

identical genotype was generated by combining one randomly

Fig. 3. Manhattan plot of GWAS study of neonatal CSF (top panels), GM
(middle panels), and ICV (bottom panels) using either naive meta-
analysis (not controlling for correlation structure between twins) or
TwinEQTL (controlling for correlation structure between twins). The
results using naive meta-analysis show overestimated significant
findings due to inflated type I error.



sampled maternal allele and one randomly sampled paternal al-
lele. If it is a DZ pair, each sample’s genotype was separately cre-

ated by merging one randomly selected maternal allele and one

randomly selected paternal allele.

Type I error simulations.
We simulated 500 MZ twins, 500 DZ twins and 100 or 1,000 sin-

gletons under different scenario of genetic (a2) and shared envi-

ronmental effect (c2). Table 1 shows the empirical type I errors of

SHom, TwinEQTL, LMM, and naive linear method (LM) without
correcting for correlation among twin subjects at different signifi-

cance levels a and 6 scenarios of different genetic and environ-

mental effects. One million simulations were done in each

scenario. The results suggest that when naive LM is directly ap-
plied to simulated twin samples, type I errors can be highly in-

flated if additive genetic effects and/or shared environmental

effects are present. The empirical type I error also increases as a2

and c2 increase. In contrast, SHom, TwinEQTL, and LMM control
the type I errors well under different scenarios. The histograms

of the P-values from the 3 approaches are shown in Fig. 1.

Clearly, that P-values from TwinEQTL and LMM are uniformly
distributed while the P-values from naive LM are enriched closed

to 0.

Power simulations
Similar setups as above in type I error investigation are also used
to estimate statistical power. For twin data, since naive LM has

inflated power, for each simulated data, we randomly select a

subset of samples with a largest number of unrelated samples

(i.e. 600 subjects including 100 singletons and one half of total
1,000 twins) on which the linear regression model is valid. Power

estimations of LM from the independent subset, SHom TwinEQTL

and LMM are shown in Fig. 2. A total of 10,000 simulations were

done in each scenario. Significant power loss is observed in LM
where only a subset of subjects is analyzed. We choose signifi-

cance level of a ¼ 5� 10�8 in the power analysis in order to recre-

ate the scenarios close to real data analysis in GWAs/eQTL. The

power estimates of TwinEQTL and LMM are similar to each other
in most cases while SHom has clear power disadvantage, espe-

cially when additive genetic effect is relatively low and when the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. LocusZoom plot of genome-wide association analysis of neonatal GM, CSF, and ICV. GWAS P-values of neonatal CSF ( top panels: a-c), GM
(middle panels: d-f), and ICV (bottom panels: g-i) in EBDS study. The GWAS analysis performed separately using independent set 1 (left panels),
independent set 2 (middle panels) and then combined set 1 and set 2 using TwinEQTL (right panels). The significance of P-values in set1 and set2 is
augmented by TwinEQTL even though they were not significant in results using only set1 or set2.



DZ are dominate in the samples. Furthermore, we performed ad-
ditional simulations under various scenarios of a2 and c2, DZ/MZ
ratios, significance levels. The results indicate TwinEQTL is a
good alternative to LMM at much lower computational cost
(Supplementary Fig. 1).

Application in GWAS of brain MRI imaging
We also applied TwinEQTL to the GWAS study of brain volume in
neonates, which investigate the association between neonatal to-
tal GM volume, CSF volume, and ICV with genome-wide genetic
markers in a twin study. A total of 561 infants (300 male, 261 fe-
male) between 0 and 24 weeks of age, encompassing 295

singletons or unpaired twins, 17 sibling pairs, and 232 twins. To
perform valid genome-wide association analysis without inflated
type I error, we first randomly split the subjects into set1 and
set2 while restricting twin/sibling pairs to be separated into set1
and set2. So, within each subset, subjects are independent with
each other and subjects between subsets are correlated because
of shared families. We then performed TwinEQTL by 2 steps: (1)
perform linear regression for both set1 and set2 separately; (2)
combining the summary statistics from 2 subsets using either
TwinEQTL algorithm or naive meta-analysis without controlling
for correlation. Figure 3 shows the genome-wide results of naive
meta-analysis and TwinEQTL. Overall P-values from naive meta-

Fig. 5. eQTL plot for the SNP–transcript association using TwinEQTL method. The diagonal line shows genome-wide strong local eQTLs and other
scattered dots are intra- or interchromosomal distal eQTLs.

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac088#supplementary-data


analysis are much lower compared with those from TwinEQTL
due to poor type I error control which we shown in simulations.
Figure 4 shows the advantage of TwinEQTL during this proce-
dure. P-values from set1 and set2 are suggestive but nowhere
near to genome-wide significant when analyzed separately. After
meta analyzed using TwinEQTL, association turns out to be
genome-wide significant. More specifically, variant rs11875537,
which resides downstream of METTL4, was found significantly as-
sociated with total CSF volume using TwinEQTL. Interestingly,
METTL4 show elevated prenatal expression in a small subset of
brain regions. By examining exon level expression data from
Brainspan, we found METTL4 has specific isoforms with differen-
tially regulated expression across the lifespan (Kang et al. 2011).
Similarly, another variant rs115842868, which resides down-
stream of CAAP1, was found significantly associated with GM vol-
ume. By checking with human brain atlas, we also found that
CAAP1 is also preferentially expressed in several brain tissues
(Shen et al. 2012). We also found that the protein expression level
of LMCD1 is highest in cerebellum among all the tissues (Shen
et al. 2012). In addition, variant rs6805949, which resides down-
stream of LMCD1, was found significantly associated with ICV.
All of these evidences suggest the potential power of TwinEQTL
in identifying biological factors related to brain development.

Application in NTR twin eQTL study
We applied TwinEQTL to our previously published eQTL analysis
of NTR twin data (Wright et al. 2014). Due to computational limi-
tation of standard LMM in our previous study, we could only af-
ford to apply LMM–ACE model to a subset of SNP–gene pairs. As a
compromise, we used 2-step approach to perform eQTL analysis
with twin subjects: (1) perform fast eQTL analysis with
MatrixEQTL using linear model while ignoring twin status; (2)
perform eQTL analysis only on significant eQTLs from first step
with valid but slow LMM–ACE model. With TwinEQTL method,
we are able to compute both local and distal eQTLs in 1 step and
all pairs of SNP–transcripts associations were computed in <2 h.
The SNP–transcripts associations with P-values passing certain
thresholds are shown in the eQTL plot (Fig. 5). In summary, we
were able to identify consistent set of eQTL genes with much less
computing time using TwinEQTL method.

Algorithm performance
We performed speed analysis in PC with 64-bit Windows 10, Intel
Xeon E3-1225 CPU, 3.30 GHz, 32 GB RAM and MS R Open version
4.0.2 (64 bit). We compared our method with LMM–ACE model us-
ing GWAS dataset of UNC-Chapel Hill EBDS with only genotyped
SNPs (m¼ 854,979). Our estimate shows it took more than 73 h for
LMM–ACE using R, and it took about 1 h for BOLT-LMM to com-
plete same task under High Performance Cluster. By implement-
ing TwinEQTL using both accelerated estimation for ACE model
(Chen et al. 2019) and efficient matrix multiplication method be-
hind MatrixEQTL (Shabalin 2012), the computing time is reduced
to only 22 s once the data has been loaded in R, which is more
than 10,000 times increase in computational efficiency compared
with LMM–ACE model. To assess the computational performance
of TwinEQTL with realistic settings, we simulated eQTL data un-
der different sample sizes (N ¼ 500; 1K; 5K; 10K), number of SNPs
(P ¼ 500K; 1M; 2M), and various variance components within a
normal range. The average computational time with 20K tran-
scripts is shown in Table 2, suggesting that the computational
complexity of TwinEQTL is linear in N and P, which is practical
for real world GWAS and expression data. The results also sug-
gest that it is acceptable to run eQTL analysis when sample size

is <2K. However, when sample size is as large as 5K, a few HPC
nodes is recommended for such analysis.

Discussion
We provided a novel and simple approach, TwinEQTL for both
GWAS and eQTL studies with correlated twin subjects. Our ap-
proach is significantly faster than traditional method such as
LMM and our previous fast alternative (Yin et al. 2015). TwinEQTL
only needs to estimate the correlation once per trait with LMM–
ACE, instead of performing LMM each per SNP–trait pair for mil-
lions of times in a typical GWAS. Similar to SHom (Zhu et al. 2015),
TwinEQTL uses meta-analysis-like approach to combine test sta-
tistics from related subjects, while adjusting for correlation be-
tween them, but offers a more accurate correlation estimate and
a much faster implementation for twin GWAS. The method is es-
pecially useful for twin eQTL analysis, where LMM is prohibited.

There are several limitations that must be considered when
using TwinEQTL. First, the current implementation of TwinEQTL
only deals with continuous traits or gene expressions. Other
types of responses could be implemented in the future if there is
any demand. Secondly, TwinEQTL does not account for
responses with complicated structure such as longitudinal obser-
vations or studies with multilevel family structures, which could
be estimated through general linear model with correctly speci-
fied variance–covariance component such as compound symme-
try, autoregressive model, unstructure, etc., or alternatively
using more robust estimation method such as generalized esti-
mating equations. Compared with LMM, statistically, TwinEQTL
is expected to experience some efficiency loss unless qMZ ¼ qDZ ¼
0 or nDZ ¼ 0, which agrees with the findings on mega-analysis vs
meta-analysis in (Lin and Sullivan 2009; Lin and Zeng 2010b). We
have conducted extensive simulations for a wide range of values
of r2

a and r2
c to empirically demonstrate that the power loss of

TwinEQTL is acceptable for practical use given its tremendous
computational gain (Supplementary Fig. 1). Furthermore,
TwinEQTL requires splitting samples into 2 independent subsets,
which could potentially create imbalance of MAF between 2 sub-
sets. This can be problematic for variants with low allele fre-
quency and small sample size because rare variants can become
rarer in each subset and will have more leverages to be more in-
fluential in the association analysis and might potentially create
artifacts by having single extreme outlier (Chatterjee and Hadi
1986). Similar issues have been observed in our own analysis
when comparing the GWAS results of TwinEQTL with those from
LMM (Xia et al. 2017), where top hits in CSF GWAS on chromo-
some 18 from TwinEQTL were not found by LMM and top hit in
GM GWAS on chromosome 4 from LMM was missed by
TwinEQTL. Lastly, according to our simulations, TwinEQTL

Table 2. Computational performance of TwinEQTL for eQTL
analysis.

Estimated time (hours)a

Sample size (Nb) 500K SNPs 1M SNPs 2M SNPs

500 2.3 4.5 18.3
1,000 3.8 9.9 32.1
2,000 9.0 15.4 36.3
5,000 22.9 42.6 91.5
10,000 52.3 90.0 180.5

a eQTL analysis using 20,000 simulated gene expression values.
b The ratio of MZ vs DZ is 1:1 with 80% of twins in total.

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac088#supplementary-data


performs best when most of the subjects are twins in the study.

However, when more than half of the subjects are independent,

neither LMM nor TwinEQTL have overwhelming power advantage

over linear regression with only independent subset. As a result,

for study that was not designed specifically for twin, the easiest

approach to deal with sporadic twin subjects is just simply select

one subject from each twin pair followed by linear regression.

However, for twin pairs with substantial portion, TwinEQTL

should be the most suitable method.

Data availability
The authors affirm that all data necessary for confirming the

conclusions of the article are present within the article, figures,

and tables.
TwinEQTL is implemented in R and is available and main-

tained under GitHub website https://github.com/andreyshabalin/

TwinEQTL. The required input data by TwinEQTL includes geno-

type data, gene expression data, covariates data and twin status

data.
Supplemental material is available at GENETICS online.
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Appendix
We describe the method first assuming no covariates exist.
Extension to situations where one or more covariates exist will be
discussed later. Suppose for a given GWAS, there are nMZ pairs of
MZ, nDZ pairs of DZ, and nSg singletons. The total sample size
n ¼ 2nMZ þ 2nDZ þ nSg. First, we randomly split each twin pair into
2 groups, named group 1 and group 2. We then randomly divide
the singletons into half and assign them to group 1 and group 2
separately. Samples in groups 1 and 2 are ordered in such a way
that the first nMZ samples in groups 1 and 2 are the paired MZ
samples, and the nDZ samples are the paired DZ samples, and the
remaining samples are singletons. Now for samples within group
k (k¼ 1, 2), they are genetically unrelated, on which the simple
linear model below can be performed between a given SNP and
the trait:

yik ¼ lk þ bgik þ �ik (6)

where gik and yik are the corresponding genotype and phenotype
of subject iði ¼ 1; . . . ; nkÞ in group k, and the random error
�ik � Nð0; r2

kÞ. For simplification, we assume that both y and g are
standardized to have mean 0 and variance 1 within each group.

The MLE of bb from the 2 subsets (k¼ 1, 2) therefore equals

bbk ¼
Pnk

i¼1ðgik � gk Þðyik � yk ÞPnk
i¼1 ðgik � gk Þ2

¼
Pnk

i¼1 yikgik

nk � 1
: (7)

The correlation between �i1 and �j2 is

Corrð�i1 ; �j2 Þ ¼
qDZ; subjects i and j are a DZ pair
qMZ; subjects i and j are a MZ pair
0; subjects i and j are unrelated;

8<: (8)

according to the common ACE model (Neale and Cardon 1992) for
twin data. Here

qDZ ¼
1
2

r2
a þ r2

c

� �
= r2

a þ r2
c þ r2

e

� �
and

qMZ ¼ ðr2
a þ r2

c Þ=ðr2
a þ r2

c þ r2
e Þ

with r2
a being the additive genetic effect and r2

c being the shared
common environment effect.

To combine the test results from the 2 subsets, we use the
well-known inverse-variance estimator of b in traditional meta-
analysis (Lin and Zeng 2010b) to estimate the SNP effect b as

bb ¼PK
k¼1

bbk=dvarð bbk ÞPK
k¼1 1=dvarð bbk Þ

; (9)

which can be further simplified to bb ¼ ðcb1 þcb2 Þ=2 for our situa-
tion since we randomly and evenly split the data, and thus expect
the genetic effect estimates from the 2 subsets are equally effi-
cient. Such meta-analysis idea is not new and has been used for
integrating GWAS data with shared control samples (Lin and
Sullivan 2009).

The variance of bb therefore equals

var bb� �
¼ var

cb1 þcb2

2

!
¼ 1

4
var cb1

� �
þ 1

4
var cb2

� �
þ 1

2
Cov cb1 ;

cb2

� �
¼ 1

4
var cb1

� �
þ 1

4
var cb2

� �
þ 1

2
E cb1

cb2

� �
� E cb1

� �
E cb2

� �� �
¼ 1

4
var cb1

� �
þ 1

4
var cb2

� �
þ 1

2
E cb1

cb2

� �
(10)

Under H0, Eðcb1 Þ ¼ Eðcb2 Þ ¼ 0. Further, due to the special order-
ing of the samples in groups 1 and 2, we have

E cb1
cb2

� �
¼ E

1
n1

Xn1

i

yi1gi1

!
1
n2

Xn2

j

yj2gj2

0@ 1A0@ 1A
¼ 1

n1n2

X
i;j

E yi1gi1yj2gj2ð Þ
� �

¼ 1
n1n2

X
i;j

E b1gi1 þ �i1ð Þgi1 b2gj2 þ �j2
� �

gj2
� �� �

¼ 1
n1n2

X
i;j

E �i1gi1�j2gj2ð Þ
� �

¼ 1
n1n2

X
i;j

E �i1�j2ð ÞE gi1gj2ð Þ
� �

¼ 1
n1n2

XnMZ

i¼1

E �i1�i2ð ÞE gi1gi2ð Þ þ
XnDZþnMZ

i¼nMZþ1

E �i1�i2ð ÞE gi1gi2ð Þ

0@ 1A
¼ 1

n1n2
qDZ

XnMZ

i¼1

E gi1gi2ð Þ þ qDZ

XnMZþnDZ

i¼nMZþ1

E gi1gi2ð Þ

0@ 1A
¼ 1

n1n2
qMZnMZEMZ g1; g2ð Þ þ qDZnDZEDZ g1; g2ð ÞÞ;
�

(11)

where g1 and g2 are defined as genotypes of a given twin pair.
Instead of calculating Eðg1; g2Þ for DZ and MZ pairs, it is easier

to estimate Eðg0i1; g0i2Þ, where g0i1 and g0i2 are original genotypes
coded as 0, 1, and 2 as the number of minor alleles of each geno-
type. Suppose the MAF of g0i is f, then under HWE, we have

Eðg01g02jIBDÞ ¼
ð2f Þ2; if IBD ¼ 0
f þ 3f 2 if IBD ¼ 1
2f ð1� f Þ þ ð2f Þ2; if IBD ¼ 2;

8><>: (12)

since

1) if IBD ¼ 0, g01 and g02 are essentially independent of each
other so Eðg01g02jIBD ¼ 0Þ ¼ Eðg01ÞEðg02Þ ¼ ð2f Þ2;

2) if IBD ¼ 2, g01 and g02Zg02 are identical, so Eðg01g02jIBD ¼ 2Þ ¼
Eðg2

1Þ ¼ varðg01Þ þE2ðg01Þ ¼ 2f ð1� f Þ þ ð2f Þ2;
3) if IBD ¼ 1, g01 and g02 share 1 allele IBD, so we have

Eðg01g02jIBD ¼ 1Þ ¼ Eððxþ yÞðxþ zÞÞÞ ¼ Eðx2 þ yxþ zxþ yzÞ

¼ Eðx2Þ þ EðxyÞ þ EðxzÞ þ EðyzÞ ¼ f þ f 2 þ f 2 þ f 2 ¼ f þ 3f 2;
(13)

where x, y, and z are the constituting alleles of the 2 twin samples
and each follows Bernoulli(f).

Based on the above calculations, we can get

EMZ g1g2ð Þ ¼
Eðg01g02jIBD ¼ 2Þ � ð2f Þ2

2f ð1� f Þ

¼ 2f ð1� f Þ þ ð2f Þ2 � ð2f Þ2

2f ð1� f Þ ¼ 1

(14)



For DZ pairs, the IBD can take values 0, 1, or 2 with probabili-
ties 1/4, 1/2, and 1/4, respectively. Thus

E g1g2ð Þ ¼
Eðg01g02Þ � ð2f Þ2

2f ð1� f Þ

¼
1
4

E g01g02jIBD ¼ 0
� �

þ 1
2

E g01g02jIBD ¼ 1
� �

2f ð1� f Þ

þ
1
4

E g01g02jIBD ¼ 2
� �

� ð2f Þ2

2f ð1� f Þ

¼
1
4

4f 2
� �

þ 1
2

f þ 3f 2
� �

þ 1
4

2f 1� f
� �

þ 4f 2
� �

� ð2f Þ2

2f ð1� f Þ ¼ 1
2

(15)

After plugging Equations (14) and (15) into Equation (11), we
obtain

E cb1
cb2

� �
¼ 1

n1n2

1
2

nDZqDZ þ nMZqMZÞ ¼
nDZqDZ þ 2nMZqMZ

2n1n2
;

�
(16)

which can be further plugged into equation 10 to prove that

var bb� �
¼ 1

4
var cb1

� �
þ 1

4
var cb2

� �
þ 1

2
E cb1

cb2

� �
� 1

4ðn1 � 1Þ þ
1

4ðn2 � 1Þ þ
nDZqDZ þ 2nMZqMZ

4n1n2

� n1 þ n2 þ nDZqDZ þ 2nMZqMZ

4n1n2
:

(17)

Finally, the metatest statistic based on the estimates of b from
the 2 groups can be expressed as

Z ¼
bbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðbbÞq ¼ ðcb1 þcb2 Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ n2 þ nDZqDZ þ 2nMZqMZÞ=4n1n2

p
¼ T1=

ffiffiffiffiffi
n1
p þ T2=

ffiffiffiffiffi
n2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 þ n2 þ nDZqDZ þ 2nMZqMZÞ=n1n2
p

¼ T1 þ T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1þ 2ðnDZqDZ þ 2nMZqMZÞ=n

p
¼ T1 þ T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1þ 2CorrðT1;T2Þ
p

(18)

where CorrðT1;T2Þ ¼ ðnDZqDZ þ 2nMZqMZÞ=n, which is the correla-
tion between T1 and T2, with T1 and T2 corresponding t-statistics
from the set1 and set2 data, respectively. Under H0 : Z � Nð0; 1Þ.
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