47 research outputs found
Design, synthesis and antiparasitic evaluation of click phospholipids
A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure\u2013activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 \ub5M. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases
High-Throughput Phenotypic Screening and Machine Learning Methods Enabled the Selection of Broad-Spectrum Low-Toxicity Antitrypanosomatidic Agents
Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)-benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead
Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit <i>Trypanosoma brucei </i>Pteridine Reductase in Support of Early-Stage Drug Discovery
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained
Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice
Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasisThe study was supported in Spain by grants from Ministerio de Ciencia e Innovación FIS
PI11/00095 and FISPI14/00366 from the Instituto de Salud Carlos III within the Network of TropicalDiseases Research (VI P I+D+I 2008-2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)). This work was also supported in Brazil by a grant from CNPq (Ciencia sem Fronteiras-PVE 300174/2014-4). A CBMSO institutional grant from Fundación Ramón Areces is also acknowledged. EAFC is a grant recipient of CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip
Regulation of immunity during visceral Leishmania infection
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program
Scaffolds and Biological Targets Avenue to Fight Against Drug Resistance in Leishmaniasis
Leishmaniasis is causing a major health problem worldwide and only five to six drugs are available for its control. Among them, antimonials, amphotericin, and miltefosine have been introduced starting in the 1940s and have proved to be effective for many years. However, the appearance of resistance threatens the success of anti-Leishmania treatment and spontaneous resistance to classical first- and second-line anti-Leishmania therapy reveals the major need to develop novel and less toxic drugs. A deep understanding of the mechanisms of drug resistance may help in the design of novel anti-Leishmania agents to be exploited in combination or as second-line therapy. Moreover, the discovery and validation of novel and druggable targets represent a useful tool to tackle drug resistance in leishmaniasis. Some biological processes such as redox metabolism, folate biosynthesis, protein synthesis, and turnover are potentially suitable to develop novel effective agents since they involve proteins showing a unique biological profile with respect to the human metabolism. Phenotypic screening and target-based drug discovery are promising tools to be exploited in drug discovery and development for leishmaniasis. Herein, we outline the most recent efforts in the identification of novel chemical scaffolds using both drug discovery strategies. We finally discuss the breakthroughs in the identification and validation of new biological targets, including Leishmania infantum initiation factor 4A, Leishmania casein kinase 1.2 (LmCK1.2), and methionyl-tRNA synthetase in Leishmania parasites. Different medicinal chemistry teams are currently exploring these targets aiming to pick out compounds displaying an improved profile to reinforce the drug pipeline
Sero-epidemiology of toxocariasis in a rural settlement in Sao Paulo state, Brazil
The seroprevalence of Toxocara canis and risk factors for infection with this parasite were explored in a rural settlement in Sao Paulo state, Brazil. Total IgA and IgE levels in 79 subjects were determined by turbidimetry and chemiluminescence, respectively. Total counts of leucocytes and erythrocytes and differential counts of leucocytes were made by flow cytometry. ELISA for the detection of anti-Toxocara IgG, IgA and IgE were standardized using Toxocara excretory-secretory antigens (TES) obtained from the cultured second-stage larvae of T. canis. Seventeen (21.5%) of the subjects were found positive for anti-Toxocara IgG, with no significant differences in such seropositivity with age or gender. Thirty (38%) of the subjects showed eosinophilia and 70 (89%) had elevated levels of total IgE. Among the 17 subjects found seropositive for anti-Toxocara IgG, the percentage of leucocytes represented by eosinophils (P=0.0069) and total levels of IgE (P=0.0452) were positively correlated with the levels of anti-TES IgE. Although anti-TES IgA was detected in 10 (59%) of the subjects, there was no significant correlation between the levels of total IgA and those of Toxocara-specific IgA. Only one of the 17 subjects found positive for anti-Toxocara IgG had attended a secondary school and all but two belonged to households with monthly incomes of < U.S.$100. In the study community at least, seropositivity may be related to poor living standards and lack of basic sanitary conditions. The presence of anti-Toxocara IgE and IgA may facilitate the diagnosis of toxocariasis and may well be useful for monitoring the success of treatment
Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti-Trypanosoma brucei Agents
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (K-i = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development
Toxocariasis/cysticercosis seroprevalence in a long-term rural settlement, Sao Paulo, Brazil
Seroprevalence of Toxocara and Taenia solium and risk factors for infection with these parasites were explored in a long-term rural settlement in Sao Paula state, Brazil. An ELISA for the detection of anti-Toxocara IgG and IgE and anti-T. solium cysticerci was standardized using Toxocara excretory-secretory antigens (TES) obtained from the cultured second-stage larvae of T. canis and by vesicular fluid antigen from Taenia crassiceps cysticerci (VC). For cysticercosis, the reactive ELISA samples were assayed by Western blot using 18 kDa and 14 kDa proteins purified from VF. Out of 182 subjects, 25 (13.7%,) presented anti-Toxocora IgG and it positive correlation between total IgE and the reactive index of specific anti-TES IgE (P=0.0265) was found amongst the subjects found seropositive for anti-Toxocara IgG. In these individuals 38.0%. showed ocular manifestations. The frequency of anti-T. solium cysticerci confirmed by Western blot wits 0.6%, Seropositivity for Toxocara was correlated with low educational levels and the owning of dogs. Embryonated eggs of Toxocara spp. were found in 43.3% of the analysed areas