1,545 research outputs found

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Electromagnetic background noise at L'Aquila Geomagnetic Observatory

    Get PDF
    In this paper we analyze the electromagnetic background noise at L'Aquila Geomagnetic Observatory during 2006 and 2007 in the frequency band 1-100 mHz. In this band a pronounced daily variation is observed both in the natural signals as well as in the artificial ones, giving rise to the problem of separating different contributions of very similar morphology. We analyzed periods when the local K index was approximately zero, in correspondence with minimum of the magnetospheric and ionospheric activity. We found that in our area the main source of artificial noise is constituted by the DC electrified railways

    Statistical characterization of residual noise in the low-rank approximation filter framework, general theory and application to hyperpolarized tracer spectroscopy

    Full text link
    The use of low-rank approximation filters in the field of NMR is increasing due to their flexibility and effectiveness. Despite their ability to reduce the Mean Square Error between the processed signal and the true signal is well known, the statistical distribution of the residual noise is still undescribed. In this article, we show that low-rank approximation filters are equivalent to linear filters, and we calculate the mean and the covariance matrix of the processed data. We also show how to use this knowledge to build a maximum likelihood estimator, and we test the estimator's performance with a Montecarlo simulation of a 13C pyruvate metabolic tracer. While the article focuses on NMR spectroscopy experiment with hyperpolarized tracer, we also show that the results can be applied to tensorial data (e.g. using HOSVD) or 1D data (e.g. Cadzow filter).Comment: 26 pages, 7 figure

    Integration of high-temperature electrolysis in an HVO production process using waste vegetable oil

    Get PDF
    The production of substitutes for liquid fossil fuels is of utmost importance for the decarbonization of the transport sector. This paper assesses the economic feasibility of producing hydrotreated vegetable oil (HVO) using waste vegetable oils as feedstock. The supply of hydrogen for the upgrading of the oil is obtained through a high-temperature electrolysis process, fed by low-carbon electricity. The use of waste materials eliminates the competition with food crops (e.g. soybean or rapeseed) and promotes the recycle of substances that should be treated for disposal. The results of the study show that the production cost of HVO with the considered plant are around 33% higher than that of fossil diesel. Moreover, the variable that has the strongest impact on the production cost of HVO is the price of the waste vegetable oil, which affects the final results more than the electricity price and the cost of the electrolyser

    Molecular crystallization inhibitors for salt damage control in porous materials. An overview

    Get PDF
    The use of inhibition chemicals holds the prospect of an efficient strategy to control crystallization in porous materials, thereby potentially contributing to the prevention or mitigation of the salt decay phenomenon in modern as well as historical building materials in a more sustainable manner. In this review, we first provide an essential background on the mechanism of salt crystallization and on the factors influencing this phenomenon; next, we illustrate the mechanism at the basis of the action of crystal growth inhibitors, and critically discuss the major advances in the development of different families of inhibitors, particularly focusing on their influence on salt transport and crystallization within the structure of porous media. Specifically, correlations between the crystallization inhibition processes in porous materials and variables, such as porous substrate composition and properties, contaminant salt type and concentrations, microclimatic conditions, inhibiting solution concentration and properties, and application methods, will be highlighted. Environmental aspects, limitations, and problems associated with some inhibition chemicals are also taken into account. Finally, a survey and a discussion on the most representative experimental techniques and instrumentation available to assess qualitatively and quantitatively the inhibitor effectiveness, as well as recently developed modelling tools are given out

    Reinforcement-matrix interactions and their consequences on the mechanical behavior of basalt fibers-cement composites

    Get PDF
    In order to prepare basalt fibers-reinforced cement-based mortars with higher compatibility between reinforcement and matrix, basalt fibers with new surface treatments (sizing) were studied looking for enhanced interaction at the interphase between basalt fibers and cement matrix. As-received, calcinated, activated and silanized (by three silane aqueous solutions: i) aminopropyltriethoxysilane, APTES; ii) ¿-aminopropylmethyldiethoxysilane, APDES and iii) a mixture APTES APDES 50% by weight) basalt fibers were dispersed in Portland cement matrix. Performances of the composites were evaluated by mechanical tests. Final correlation between the fibers surface characteristics and mechanical performance was carried out considering the induced microstructural changes and adhesion at the interface. Fractographic analysis by SEM and laser and optical profilometry were performed. A clear improvement in mechanical properties was obtained when basalt fibers were dispersed in cement matrix. Results suggest that better behavior is achieved when basalt fibers modified with a complex mixture of silanes are dispersed in cement matrix.This work was financially supported by the Projects MAT2014-59116-C2 (Ministerio de Economía y Competitividad); 2012/00130/004 (Fondos de Investigación de Fco. Javier GonzalezBenito, política de reinversión de costes generales, Universidad Carlos III de Madrid) and 2011/00287/002 (Acción Estratégica en Materiales Compuestos Poliméricos e Interfases, Universidad Carlos III de Madrid). The research was financially supported also by the Project Bando per il Finanzia- mento di Progetti di Ricerca Congiunti per la Mobilit`a all Estero di Studenti di Dottorato prot. n 0051266 (Universit`a degli Studi di Roma, La Sapienza) in the frame the PhD Thesis of Morena Iorio. Finally, the authors would like to thank the group In-service Material Performance (Universidad Carlos III de Madrid) for supporting the project in the mechanical tests

    Ire1 alpha/xbp1 axis sustains primary effusion lymphoma cell survival by promoting cytokine release and stat3 activation

    Get PDF
    Primary Effusion Lymphoma (PEL) is a highly aggressive B cell lymphoma associated with Kaposi’s Sarcoma-associated Herpesvirus (KSHV). It is characterized by a high level of basal Endoplasmic Reticulum (ER) stress, Unfolded Protein Response (UPR) activation and constitutive phosphorylation of oncogenic pathways such as the Signal Transducer and activator of Transcription (STAT3). In this study, we found that the inositol requiring kinase (IRE) 1alpha/X-box binding protein (XBP1) axis of UPR plays a key role in the survival of PEL cells, while double stranded RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor (ATF) 6 slightly influence it, in correlation with the capacity of the IRE1alpha/XBP1 axis to induce the release of interleukin (IL)-6, IL-10 and Vascular-Endothelial Growth Factor (VEGF). Moreover, we found that IRE1alpha/XBP1 inhibition reduced STAT3 Tyr705 phosphorylation and induced a pro-survival autophagy in PEL cells. In conclusion, this study suggests that targeting the IRE1alpha/XBP1 axis represents a promising strategy against PEL cells and that the cytotoxic effect of this treatment may be potentiated by autophagy inhibition
    • …
    corecore