47 research outputs found

    Curvature correction to the mobility of fluid membrane inclusions

    Get PDF
    For the first time, using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces via a Stokeslet-type approach, we provide a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this wholly general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions

    Within-population variability in a moth sex pheromone blend: genetic basis and behavioural consequences

    No full text
    Evolutionary diversification of sexual communication systems in moths is perplexing because signal and response are under stabilizing selection in many species, and this is expected to constrain evolutionary change. In the moth Heliothis virescens, we consistently found high phenotypic variability in the female sex pheromone blend within each of four geographically distant populations. Here, we assess the heritability, genetic basis and behavioural consequences of this variation. Artificial selection with field-collected moths dramatically increased the relative amount of the saturated compound 16:Ald and decreased its unsaturated counterpart Z11-16:Ald, the major sex pheromone component (high line). In a cross between the high- and low-selected lines, one quantitative trait locus (QTL) explained 11-21% of the phenotypic variance in the 16:Ald/Z11-16:Ald ratio. Because changes in activity of desaturase enzymes could affect this ratio, we measured their expression levels in pheromone glands and mapped desaturase genes onto our linkage map. A delta-11-desaturase had lower expression in females producing less Z11-16:Ald; however, this gene mapped to a different chromosome than the QTL. A model in which the QTL is a trans-acting repressor of delta-11 desaturase expression explains many features of the data. Selection favouring heterozygotes which produce more unsaturated components could maintain a polymorphism at this locus

    One quantitative trait locus for intra- and interspecific variation in a sex pheromone

    No full text
    Even though premating isolation is hypothesized to be a major driving force in speciation, its genetic basis is poorly known. In the noctuid moth Heliothis subflexa, one group of sex pheromone components, the acetates, emitted by the female, plays a crucial isolating role in preventing interspecific matings to males of the closely related Heliothis virescens, in which females do not produce acetates and males are repelled by them. We previously found intraspecific variation in acetates in H. subflexa: females in eastern North America contain significantly more acetates than females in Western Mexico. Here we describe the persistence of this intraspecific variation in laboratoryreared strains and the identification of one major quantitative trait locus (QTL), explaining 40 % of the variance in acetate amounts. We homologized this intraspecific QTL to our previously identified interspecific QTL using restriction-associated DNA (RAD) tags. We found that a major intraspecific QTL overlaps with one of the two major interspecific QTL. To identify candidate genes underlying the acetate variation, we investigated a number of gene families with known or suspected acetyl- or acyltransferas

    Curvature in the very-high energy gamma-ray spectrum of M87

    No full text
    International audienceThe radio galaxy M87 is a variable very-high energy (VHE) gamma-ray source, exhibiting three major flares reported in 2005, 2008, and 2010. Despite extensive studies, the origin of the VHE gamma-ray emission is yet to be understood. In this study, we investigate the VHE gamma-ray spectrum of M87 during states of high gamma-ray activity, utilizing 20.2\, hours the H.E.S.S. observations. Our findings indicate a preference for a curved spectrum, characterized by a log-parabola model with extra-galactic background light (EBL) model above 0.3\,TeV at the 4σ\sigma level, compared to a power-law spectrum with EBL. We investigate the degeneracy between the absorption feature and the EBL normalization and derive upper limits on EBL models mainly sensitive in the wavelength range 12.4\,μ\mum - 40\,μ\mum

    I disturbi neuropsicologici nella malattia di Parkinson

    No full text

    The vanishing of the primary emission region in PKS 1510-089

    No full text
    International audienceIn July 2021, PKS 1510-089 exhibited a significant flux drop in the high-energy gamma-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy gamma-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy gamma-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy gamma-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line-of-sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images

    HESS J1809-193: a halo of escaped electrons around a pulsar wind nebula?

    No full text
    International audienceContext. HESS J1809-193 is an unassociated very-high-energy γ\gamma-ray source located on the Galactic plane. While it has been connected to the nebula of the energetic pulsar PSR J1809-1917, supernova remnants and molecular clouds present in the vicinity also constitute possible associations. Recently, the detection of γ\gamma-ray emission up to energies of \sim100 TeV with the HAWC observatory has led to renewed interest in HESS J1809-193. Aims. We aim to understand the origin of the γ\gamma-ray emission of HESS J1809-193. Methods. We analysed 93.2 h of data taken on HESS J1809-193 above 0.27 TeV with the High Energy Stereoscopic System (H.E.S.S.), using a multi-component, three-dimensional likelihood analysis. In addition, we provide a new analysis of 12.5 yr of Fermi-LAT data above 1 GeV within the region of HESS J1809-193. The obtained results are interpreted in a time-dependent modelling framework. Results. For the first time, we were able to resolve the emission detected with H.E.S.S. into two components: an extended component that exhibits a spectral cut-off at \sim13 TeV, and a compact component that is located close to PSR J1809-1917 and shows no clear spectral cut-off. The Fermi-LAT analysis also revealed extended γ\gamma-ray emission, on scales similar to that of the extended H.E.S.S. component. Conclusions. Our modelling indicates that based on its spectrum and spatial extent, the extended H.E.S.S. component is likely caused by inverse Compton emission from old electrons that form a halo around the pulsar wind nebula. The compact component could be connected to either the pulsar wind nebula or the supernova remnant and molecular clouds. Due to its comparatively steep spectrum, modelling the Fermi-LAT emission together with the H.E.S.S. components is not straightforward. (abridged

    The vanishing of the primary emission region in PKS 1510-089

    No full text
    International audienceIn July 2021, PKS 1510-089 exhibited a significant flux drop in the high-energy gamma-ray (by a factor 10) and optical (by a factor 5) bands and remained in this low state throughout 2022. Similarly, the optical polarization in the source vanished, resulting in the optical spectrum being fully explained through the steady flux of the accretion disk and the broad-line region. Unlike the aforementioned bands, the very-high-energy gamma-ray and X-ray fluxes did not exhibit a significant flux drop from year to year. This suggests that the steady-state very-high-energy gamma-ray and X-ray fluxes originate from a different emission region than the vanished parts of the high-energy gamma-ray and optical jet fluxes. The latter component has disappeared through either a swing of the jet away from the line-of-sight or a significant drop in the photon production efficiency of the jet close to the black hole. Either change could become visible in high-resolution radio images
    corecore