74 research outputs found
Polarization-dependence of anomalous scattering in brominated DNA and RNA molecules, and importance of crystal orientation in single- and multiple-wavelength anomalous diffraction phasing
In this paper the anisotropy of anomalous scattering at the Br K-absorption edge in brominated nucleotides is investigated, and it is shown that this effect can give rise to a marked directional dependence of the anomalous signal strength in X-ray diffraction data. This implies that choosing the correct orientation for crystals of such molecules can be a crucial determinant of success or failure when using single- and multiple-wavelength anomalous diffraction (SAD or MAD) methods to solve their structure. In particular, polarized absorption spectra on an oriented crystal of a brominated DNA molecule were measured, and were used to determine the orientation that yields a maximum anomalous signal in the diffraction data. Out of several SAD data sets, only those collected at or near that optimal orientation allowed interpretable electron density maps to be obtained. The findings of this study have implications for instrumental choices in experimental stations at synchrotron beamlines, as well as for the development of data collection strategy programs
PLP and GABA Trigger GabR-mediated Transcription Regulation in Bacillus Subtilis via External Aldimine Formation
The Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of γ-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5′-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the “active site” in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic γ-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoic acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O–PLP–AFPA complex and Asp-AT–PLP–AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP
Parkinson's disease-associated mutations in the GTPase domain of LRRK2 impair its nucleotide-dependent conformational dynamics
Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently “on” conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer–monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound–like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer–dimer dynamics and thereby trap its GTPase domain in an activated state
Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three sub-Angstrom resolution X-ray crystal structures of CTX-M \u3b2-lactamase, representing three stages of the enzymatic pathway, apo protein (0.79 \uc5), pre-covalent complex (0.89 \uc5), and acylation transition state analog (0.84 \uc5). The binding of a non-covalent ligand induces a proton transfer from the catalytic Ser70 to the general base Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73. QM/MM reaction path calculations determined the proton transfer barrier between Ser70 and Lys73 to be 1.53 kcal/mol, further confirming the presence of a LBHB. This LBHB is absent in the other two structures. Our data represents the first evidence of a direct and transient LBHB stabilizing a nucleophilic serine, as hypothesized by Cleland and Kreevoy. These results have important implications for the study of enzyme mechanisms as well as protein-inhibitor interactions
Revealing low-dose radiation damage using single-crystal spectroscopy
Data on the rapid reduction of haem proteins in the X-ray beam at synchrotron sources are presented. The use of single-crystal spectroscopy to detect these changes and their implication for diffraction data collection from oxidized species is also discussed
A revised 1.6 Å structure of the GTPase domain of the Parkinson’s disease-associated protein LRRK2 provides insights into mechanisms
Leucine-rich repeat kinase 2 (LRRK2) is a large 286 kDa multi-domain protein whose mutation is a common cause of Parkinson’s disease (PD). One of the common sites of familial PD-associated mutations occurs at residue Arg-1441 in the GTPase domain of LRRK2. Previously, we reported that the PD-associated mutation R1441H impairs the catalytic activity of the GTPase domain thereby traps it in a persistently "on" state. More recently, we reported that the GTPase domain of LRRK2 exists in a dynamic dimer-monomer equilibrium where GTP binding shifts it to the monomeric conformation while GDP binding shifts it back to the dimeric state. We also reported that all of the PD-associated mutations at Arg-1441, including R1441H, R1441C, and R1441G, impair the nucleotide-dependent dimer-monomer conformational dynamics of the GTPase domain. However, the mechanism of this nucleotide-dependent conformational dynamics and how it is impaired by the mutations at residue Arg-1441 remained unclear. Here, we report a 1.6 Å crystal structure of the GTPase domain of LRRK2. Our structure has revealed a dynamic switch region that can be differentially regulated by GTP and GDP binding. This nucleotide-dependent regulation is impaired when residue Arg-1441 is substituted with the PD-associated mutations due to the loss of its exquisite interactions consisting of two hydrogen bonds and a π-stacking interaction at the dimer interface
Engineered polyketide biosynthesis and biocatalysis in Escherichia coli
Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent progresses in engineering Escherichia coli as a heterologous host for reconstituting PKSs of different types. Our increased understanding of PKS enzymology and structural biology, combined with new tools in protein engineering, metabolic engineering, and synthetic biology, has firmly established E. coli as a powerful host for producing polyketides
Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography
The proliferation of extremely intense synchrotron sources has enabled ever higher-resolution structures to be obtained using data collected from smaller and often more imperfect biological crystals (Helliwell, 1984). Synchrotron beamlines now exist that are capable of measuring data from single crystals that are just a few micrometres in size. This provides renewed motivation to study and understand the radiation damage behaviour of small protein crystals. Reciprocal-space mapping and Bragg coherent diffractive imaging experiments have been performed on cryo-cooled microcrystals of hen egg-white lysozyme as they undergo radiation damage. Several well established metrics, such as intensity-loss and lattice expansion, are applied to the diffraction data and the results are compared with several new metrics that can be extracted from the coherent imaging experiments. Individually some of these metrics are inconclusive. However, combining metrics, the results suggest that radiation damage behaviour in protein micro-crystals differs from that of larger protein crystals and may allow them to continue to diffract for longer. A possible mechanism to account for these observations is proposed
Recommended from our members
MAD data collection - current trends.
The multi-wavelength anomalous diffraction, or MAD, method of determining protein structure is becoming routine in protein crystallography. An increase in the number of tuneable synchrotrons beamlines coupled with the widespread availability position-sensitive X-ray detectors based on charged-coupled devices and having fast readout raised MAD structure determination to a new and exciting level. Ultra-fast MAD data collection is now possible. Recognition of the value of selenium for phasing protein structures and improvement of methods for incorporating selenium into proteins in the form of selenomethionine have attracted greater interest in the MAD method. Recent developments in crystallographic software are complimenting the above advances, paving the way for rapid protein structure determination. An overview of a typical MAD experiment is described here, with emphasis on the rates and quality of data acquisition now achievable at beamlines developed at third-generation synchrotrons sources
- …