52 research outputs found

    The self-referencing oxygen-selective microelectrode: Detection of transmembrane oxygen flux from single cells

    No full text
    A self-referencing, polarographic, oxygen-selective microelectrode was developed for measuring oxygen fluxes from single cells. This technique is based on the translational movement of the microelectrode at a known frequency through an oxygen gradient, between known points, The differential current of the electrode was converted into a directional measurement of flux using the Fick equation. Operational characteristics of the technique were determined using artificial gradients. Calculated oxygen flux values matched theoretical values derived from static measurements. A test preparation, an isolated neuron, yielded an oxygen flux of 11.46+/-1.43 pmol cm(-2) s(-1) (mean +/- S.E.M.), a value in agreement with those available in the literature for single cells. Microinjection of metabolic substrates or a metabolic uncoupler increased oxygen flux, whereas microinjection of KCN decreased oxygen flux. In the filamentous alga Spirogyra greveilina, the probe could easily differentiate a 16.6 % difference in oxygen flux with respect to the position of the spiral chloroplast (13.3+/-0.4 pmol cm(-2) s(-1) at the chloroplast and 11.4+/-0.4 pmol cm(-2) s(-1) between chloroplasts), despite the fact that these positions averaged only 10.6+/-1.8 mu m apart (means +/- S.E.M.). A light response experiment showed realtime changes in measured oxygen flux correlated with changes in lighting. Taken together, these results show that the self-referencing oxygen microelectrode technique can be used to detect local oxygen fluxes with a high level of sensitivity and spatial resolution in real time. The oxygen fluxes detected reliably correlated with the metabolic state of the cell

    Dielectrophoretic assembly of insulinoma cells and fluorescent nanosensors into three-dimensional pseudo-islet constructs

    Get PDF
    Dielectrophoretic forces, generated by radio-frequency voltages applied to micromachined, transparent, indium tin oxide electrodes, have been used to condense suspensions of insulinoma cells (BETA-TC-6 and INS-1) into a 10times10 array of three-dimensional cell constructs. Some of these constructs, measuring ~150 mum in diameter, 120 mum in height and containing around 1000 cells, were of the same size and cell density as a typical islet of Langerhans. With the dielectrophoretic force maintained, these engineered cell constructs were able to withstand mechanical shock and fluid flow forces. Reproducibility of the process required knowledge of cellular dielectric properties, in terms of membrane capacitance and membrane conductance, which were obtained by electrorotation measurements. The ability to incorporate fluorescent nanosensors, as probes of cellular oxygen and pH levels, into these 'pseudo-islets' was also demonstrated. The footprint of the 10times10 array of cell constructs was compatible with that of a 1536 microtitre plate, and thus amenable to optical interrogation using automated plate reading equipment
    • …
    corecore