237 research outputs found

    CLOVER: A modelling framework for sustainable community-scale energy systems

    Get PDF
    Sustainable Development Goal 7 aims to provide sustainable, affordable, reliable and modern energy access to all by 2030 (United Nations, 2015). In order for this goal to be achieved, sustainable energy interventions in developing countries must be supported with design tools which can evaluate the technical performance of energy systems as well as their economic and climate impacts. CLOVER (Continuous Lifetime Optimisation of Variable Electricity Resources) is a software tool for simulating and optimising community-scale energy systems, typically minigrids, to support energy access in developing countries (Winchester et al., 2022). CLOVER can be used to model electricity demand and supply at an hourly resolution, for example allowing users to investigate how an electricity system might perform at a given location. CLOVER can also identify an optimally-sized energy system to meet the needs of the community under specified constraints. For example, a user could define an optimum system as one which provides a desired level of reliability at the lowest cost of electricity. CLOVER can provide an insight into the technical performance, costs, and climate change impact of a system, and allow the user to evaluate many different scenarios to decide on the best way to provide sustainable, affordable and reliable electricity to a community. CLOVER can be used on both personal computers and high-performance computing facilities. Its design separates its general framework (code, contained in a source src directory) from user inputs (data, contained in a directory entitled locations) which are specific to their investigations. The user inputs these data via a combination of .csv and .yaml files. CLOVER’s straightforward command-line interface provides simple operation for both experienced Python users and those with little prior exposure to coding. An installable package, clover-energy, is available for users to download without needing to become familiar with GitHub’s interface. Information about CLOVER and how to use it is available on the CLOVER wiki pages

    Mercury Bay Coastal Processes Study: Data Report for 2014 & 2015.

    Get PDF
    Two month-long hydrographic and sedimentation field campaigns were conducted from July 15th, 2014 to August 13th, 2014 and from April 9th, 2015 to May 8th, 2015 within the Mercury Bay-Whitianga Inlet-northern Whitianga Estuary system to fulfill the field data needs of the Waikato Regional Council towards the goal of producing a hydrodynamic model of Mercury Bay. The purpose of this data report is to summarize the instrument deployment locations,durations, and settings that were used during the field campaign. This document also aims to aid the modeler (or other Waikato Regional personnel) in the locating of the desired instrument data files from the accompanying data discs. In all cases, the raw data files have been provided for each instrument. In the instance that a raw data file is in a data format that requires proprietary software from the instrument manufacture to process, an export of the data files to a universally-readable file format has been included (e.g., .txt, .dat, .csv, .etc.) or to a MATLAB file format when necessary. Clarification has been provided for instruments that export data files without headers

    Maximising the benefits of renewable energy infrastructure in displacement settings: optimising the operation of a solar-hybrid mini-grid for institutional and business users in Mahama Refugee Camp, Rwanda

    Get PDF
    Humanitarian organisations typically rely on expensive, polluting diesel generators to provide power for services in refugee camps, whilst camp residents often have no access to electricity. Integrating solar and battery storage capacity into existing diesel-based systems can provide significant cost and emissions savings and offer an opportunity to provide power to displaced communities. By analysing monitored demand data and using computational energy system modelling, we assess the savings made possible by the integration of solar (18.4 kWp) and battery (78 kWh) capacity into the existing diesel-powered mini-grid in Mahama Refugee Camp, Rwanda. We find that the renewables infrastructure reduces fuel expenditure by 41,500andemissionsby44tCO2eq(both7441,500 and emissions by 44 tCO2eq (both 74%) over five years under the generator’s current operational strategy. An alternative strategy, with deeper battery cycling, unlocks further savings of 4100 and 12.4 tCO2eq, using 33% of battery lifetime versus 15% under the original strategy. This reduces the cost of electricity by 33% versus diesel generation alone, whilst more aggressive cycling strategies could prove economical if moderate battery price decreases are realised. Extending the system to businesses in the camp marketplace can completely offset the system fuel costs if the mini-grid company charges customers the same tariff as the one it uses in the host community, but not the national grid tariff. Humanitarian organisations and the private sector should explore opportunities to integrate renewables into existing diesel-based infrastructure, and optimise its performance once installed, to reduce costs and emissions and provide meaningful livelihood opportunities to displaced communities

    The cost and emissions advantages of incorporating anchor loads into solar mini-grids in India

    Get PDF
    Renewables-based mini-grids have the potential to improve electricity access with lower emissions and better reliability than national grids. However, these systems have a challenging cost to revenue ratio, hindering their implementation. Combining residential loads with an anchor load, a relatively large non-domestic user, can help to improve mini-grid economics. Using measured electricity demand data from India and energy modelling, we assess the cost and emissions advantages of integrating health clinics as anchor loads within domestic solar mini-grids. For comparison, we also assess the ability of the national grid to meet our demand scenarios using monitored grid data. We apply a scenario-based approach, using separate domestic and anchor load demand profiles, and both in combination; we test meeting two levels of energy demand, 95% and 100%; and compare systems using PV and batteries, diesel, and hybrid generation. We find that the national grid has poor availability, at just over 50% at the most comparable monitoring site; and that it would meet a lower fraction of energy demand for our anchor load scenarios than the domestic only ones. For the off-grid systems, we find substantial cost and emissions reductions with anchor loads relative to demand scenarios without anchor loads. At 95% of demand met, we find PV and battery systems are 14-22% cheaper than diesel-only systems, with 10 times lower carbon intensity. Our findings illustrate the role off-grid systems can play in the provision of reliable low-carbon electricity and highlight the advantages of incorporating anchor loads like health centres into such systems

    Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend

    Get PDF
    Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins

    Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation

    Get PDF
    We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain, constructed from the amalgamation of 323 new high precision gravity measurements with existing gravity data from 361 observations. The new anomaly map images the high-density core of the CVC and the pronounced gravity low centred in the Las Cañadas caldera in greater detail than previously available. Mathematical construction of a sub-surface model from the local anomaly data, employing a 3D inversion based on 'growing' the sub-surface density distribution via the aggregation of cells, enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture. We find the resultant density distribution in agreement with geological and other geophysical data. The modelled sub-surface structure supports a vertical collapse origin of the caldera, and maps the headwall of the ca. 180 ka Icod landslide, which appears to lie buried beneath the Pico Viejo–Pico Teide stratovolcanic complex. The results allow us to put into context the recorded ground deformation and gravity changes at the CVC during its reactivation in spring 2004 in relation to its dominant structural building blocks. For example, the areas undergoing the most significant changes at depth in recent years are underlain by low-density material and are aligned along long-standing structural entities, which have shaped this volcanic ocean island over the past few million years

    Seismic investigations of the O'Higgins Seamount Group and Juan FernĂĄndez Ridge: aseismic ridge emplacement and lithosphere hydration

    Get PDF
    The O'Higgins Seamount Group is a cluster of volcanic domes located 120 km west of the central Chilean Trench on the crest of the Juan Fernández Ridge. This aseismic hot spot track is subducting under South America triggering a belt of intraslab earthquake hypocenters extending about 700 km inland. The Juan Fernández Ridge marks the southern boundary of a shallow subduction segment. Subduction of oceanic basement relief has been suggested as a cause for the “flat” slab segments characterizing the Andean trench system. The Juan Fernández Ridge, however, shows only moderate crustal thickening, inadequate to cause significant buoyancy. In 2001, wide-angle seismic data were collected along two perpendicular profiles crossing the O'Higgins Group. We present tomographic images of the volcanic edifices and adjacent outer rise-trench environment, which indicate a magmatic origin of the seamounts dominated by extrusive processes. High-resolution bathymetric data yield a detailed image of a network of syngenetic structures reactivated in the outer rise setting. A pervasive fault pattern restricted to the hot spot modified lithosphere coincides with anomalous low upper mantle velocities gained from a tomographic inversion of seismic mantle phases. Reduced uppermost mantle velocities are solely found underneath the Juan Fernández Ridge and may indicate mineral alterations. Enhanced buoyancy due to crustal and upper mantle hydration may contribute an additional mechanism for shallow subduction, which prevails to the north after the southward migration of the Juan Fernández Ridge

    Crustal structure of the Peruvian continental margin from wide-angle seismic studies

    Get PDF
    Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure

    Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand

    Get PDF
    Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for
    • 

    corecore