351 research outputs found

    Regulation of IRF-3-Dependent Innate Immune Signaling Pathway by the PLpro Domain of Non-Structural Protein 3 (NSP3) of Severe Acute Respiratory Syndrome (SARS) Coronavirus

    Get PDF
    The induction of Type I Interferons (IFNs) is a powerful and rapid innate defense mechanism against viral infection, and many viruses have developed elaborate strategies to overcome the antiviral effects of IFN, ensuring their survival and replication. Severe acute respiratory syndrome coronavirus (SARS-CoV) is a highly pathogenic virus that causes severe lung disease in humans and is associated with high mortality rates. SARS-CoV, like all other successful viruses, encode proteins that counteract the innate immune response. A number of reports have indicated the papain-like protease (PLpro) domain of SARS-CoV Non-Structural Protein 3 (NSP3) as a powerful interferon antagonist, by suppressing interferon regulatory factor 3 (IRF3) dependent innate antiviral defenses. IRF3 plays a key role in viral-induced type I IFN induction pathway. Thus, viruses are well-known to evade the establishment of an antiviral state by regulating the activation of IRF3. However, functional studies detailing the PLpro IFN antagonistic abilities, are not describe in the context of the full length nsp3 protein, in which it is contained in virus infected cells. Nsp3 is the largest replicase gene product in the coronavirus genome, which contains several functional domains that are required for coronavirus replication. Establishment of a stable and controllable CoV-nsp3 expression system will allow the physiological relevant study of the PLpro mediated function of this protein. Here, I described the development of tetracycline-inducible mammalian cell lines for stable expression of the full length nsp3 of HCoV-OC43, HCoV-NL63, MERS-CoV, and SARS-CoV, respectively. Although these cell lines exhibited stable and tight control of nsp3 expression in the presence of tetracycline, I observed a variation in CoV’s nsp3 protein expression levels. However, HeLa-Fit-SCoV-nsp3 and HeLa-Fit-SCoV-nsp3-delPLP stable cell lines expressed SARS-nsp3 and SARS-nsp3-delPLP robustly and at comparable levels. I found that expression of SARS-CoV nsp3 compromised virus-induced expression of IRF-3-dependent antiviral genes and that such ability depended on the PLpro domain. In agreement with our previous study examining the effects of the PLpro domain, the inhibitory effect was downstream of the IRF-3 kinases while upstream of IRF-3. Overall, my data demonstrates that SARS-CoV nsp3 is a bona fide interferon antagonist, which acts through PLpro-mediated suppression of IRF-3 activation

    Consumer‑driven strategies towards a resilient and sustainable food system following the COVID‑19 pandemic in Australia

    Get PDF
    Background: The COVID-19 pandemic and associated public health restrictions temporarily disrupted food supply chains around the world and changed the way people shopped for food, highlighting issues with food systems resilience and sustainability. The aim of this study was to explore consumer-driven strategies towards a more resilient and sustainable food system in Australia, learning from experiences during the beginning of the COVID-19 pandemic. Methods: During May–June 2020, a cross-sectional, online survey was conducted in Tasmania, Australia in a non-random sample of adults aged 18 years and over. The survey collected demographic data and posted the open-ended question: “How could Tasmania’s food system be better prepared for a disaster in the future?” Descriptive statistics were used to analyse the demographic data and thematic analysis was employed to analyse the qualitative data. Results: Survey respondents (n = 698) were predominantly female (79%), over 55 years of age (48%), university educated (70%) and living with dependents (45%). Seven key themes were identified: (i) balance food exports with local needs; (ii) strengthen local food systems; (iii) increase consumer awareness of food supply chains; (iv) build collaboration and connection in the food system; (v) embed clear contingency arrangements; (vi) support community capacity building and individual self-sufficiency; and (vii) the food system coped well. Conclusions: The consumer-driven strategies identified indicate multiple opportunities to increase resilience and sustainability in the food system to avoid future supply disruptions. Our findings indicate that considerable popular support for more resilient, local and sustainable food systems may be emerging from the COVID-19 pandemic

    Prevalence and socio-demographic predictors of food insecurity in Australia during the COVID-19 pandemic

    Get PDF
    The COVID-19 pandemic has exacerbated economic vulnerabilities and disrupted the Australian food supply, with potential implications for food insecurity. This study aims to describe the prevalence and socio-demographic associations of food insecurity in Tasmania, Australia, during the COVID-19 pandemic. A cross-sectional survey (deployed late May to early June 2020) incorporated the U.S. Household Food Security Survey Module: Six-Item Short Form, and fifteen demographic and COVID-related income questions. Survey data (n = 1170) were analyzed using univariate and multivariate binary logistic regression. The prevalence of food insecurity was 26%. The adjusted odds of food insecurity were higher among respondents with a disability, from a rural area, and living with dependents. Increasing age, a university education, and income above $80,000/year were protective against food insecurity. Food insecurity more than doubled with a loss of household income above 25% (Adjusted Odds Ratio (AOR): 2.02; 95% CI: 1.11, 3.71; p = 0.022), and the odds further increased with loss of income above 75% (AOR: 7.14; 95% CI: 2.01, 24.83; p = 0.002). Our results suggest that the prevalence of food insecurity may have increased during the COVID-19 pandemic, particularly among economically vulnerable households and people who lost income. Policies that support disadvantaged households and ensure adequate employment opportunities are important to support Australians throughout and post the COVID-19 pandemic

    The new normal for food insecurity? : a repeated cross-sectional survey over 1 year during the COVID-19 pandemic in Australia

    Get PDF
    Background: Food insecurity during the COVID-19 pandemic has been impacted by necessary public health restrictions. Tasmania, an island state south of the Australian mainland, recorded no community transmission of COVID-19 between May 2020 to November 2021 due to strong border restrictions. This study aimed to determine the changes in prevalence and sociodemographic predictors of food insecurity throughout the COVID-19 pandemic in Tasmania, Australia. Methods: In May 2020 (survey 1: during lockdown), September 2020 (survey 2: eased restrictions) and May 2021 (survey 3: 1-year post-lockdown), cross-sectional, online surveys using convenience sampling methods determined food insecurity in Tasmanian adults using the USDA Household Food Security Survey Module: Six-Item Short Form, in addition to key sociodemographic questions. Crude and age-adjusted prevalence of food insecurity was calculated, and binary logistic regression determined at-risk groups and changes in prevalence over time. Results: The age-adjusted prevalence of food insecurity was 27.9% during lockdown (n = 1168), 19.5% when restrictions had eased (n = 1097) and 22.6% 1-year post-lockdown (n = 1100). Young adults, Aboriginal and/or Torres Strait Islander people, individuals with disabilities, families with dependents and temporary residents were at highest risk across all time points. Conclusions: The prevalence of food insecurity was higher than pre-pandemic levels across all three time points. Our results indicate the potential long-term impacts of the COVID-19 pandemic on food security in Australia, where despite easing social distancing restrictions and a lack of COVID-19 transmission, the prevalence of food insecurity reduced, but did not recover to pre-pandemic levels 1-year following a lockdown

    Surrogate Antibodies That Specifically Bind and Neutralize CCL17 But Not CCL22

    Full text link
    The chemokines CCL17 (TARC) and CCL22 (MDC) function through the same receptor, CCR4, but have been proposed to differentially affect the immune response. To better understand the role of the individual ligands, a panel of rat anti-mouse CCL17 surrogate antibodies was generated that can be used to differentiate CCL17 and CCL22 function in vitro and in vivo. We have successfully identified a panel of neutralizing antibodies by screening hybridomas for the ability to inhibit CCL17-mediated calcium mobilization. Chemotaxis in response to CCL17 is also inhibited, providing further evidence that the antibodies in this panel are antagonistic. Using a recombinant cell line expressing human CCR4, we show that the antibodies block ?-arrestin recruitment as evidence that the antibodies are specifically blocking CCL17 signaling through CCR4. The antibodies within this panel inhibit calcium mobilization with varying potency in the calcium flux assay, having apparent IC50 ranging from approximately 1 to >400?ng/mL. Although both CCL17 and CCL22 function through CCR4, only a single antibody was identified as having detectable binding to CCL22. This panel of CCL17-specific antibodies provides tools that can be used to differentiate CCL17 and CCL22 function through CCR4 interaction in vitro and in vivo.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140164/1/mab.2012.0112.pd

    Evaluating a Prioritization Framework for Monitoring Chemicals of Emerging Concern in the Salish Sea Based on Lessons Learned from Western States Programs

    Get PDF
    We are now approaching a tipping point where priority pollutants may no longer be the primary driver of environmental impairment. Contaminants of Emerging Concern (CECs) present a challenge to environmental monitoring and management programs because the rapidly emerging state of the knowledge requires an adaptive and transparent prioritization framework. The state of the science, treatment technologies, and regulatory policies are not well understood, CEC quantification is challenging and expensive, and the management approach is not simply a concentration based criteria, but may include biological end-points. The need for a shared responsibility and leveraging across many programs was evaluated through a series of webinars with other programs studying CECs including Columbia River Toxics Program, Washington Department of Ecology, Oregon Department of Environmental Quality, Southern California Coastal Waters Research Project, and San Francisco Bay Regional Monitoring Program. The lessons learned were articulated into a 10-step prioritization framework. The critical lesson learned included: 1) Develop clear objectives, definitions of CECs, and target audience; 2) Identify conceptual models to provide a clear target for the appropriate media to monitor for various chemicals and at what frequency; 3) Define the chemical characteristics in terms of usage, persistence, bioaccumulation, and toxicity; 4) Develop a target CEC analyte list; 5) Screen and rank the CEC analyte list based on chemical characteristics, environmental concentrations, and state of the science; 6) Create a transparent prioritization process to include input from key stakeholders and end users that builds consensus during development; 7) Prioritize the chemical categories by using specific metrics such as available data, status of analytical methods, available thresholds, costs, programmatic concerns and opportunities for leveraging with other programs; 8) Identify potential biological end-points and other indicators; 9) Create a formal review process to support data and knowledge sharing, adaptively manage prioritization to include new science and critical research gaps; and 10) Develop a working group to facilitate leveraging of funds across many programs

    Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G

    Get PDF
    OBJECTIVES: Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. METHODS: A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. RESULTS: Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. CONCLUSION: These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses

    Full text link
    [EN] Silverleaf nightshade (Solanum elaeagnifolium Cav.) is a drought tolerant invasive weed native to the New World. Despite its interest for common eggplant (S. melongena L.) breeding, up to now no success has been obtained in introgression breeding of eggplant with American Solanum species. Using an interspecific hybrid between common eggplant and S. elaeagnifolium as maternal parent we were able to obtain several fruits with viable seed after pollination with S. melongena pollen. Twenty individuals of the first backcross (BC1) generation were crossed again to the S. melongena parent and second backcross (BC2) seed was obtained for 17 of them, suggesting that most of the genome of S. elaeagnifolium is likely to be represented in the set of BC2 families. Five plants of each of the two parents, interspecific hybrid and BC1 generation were characterized with morphological descriptors and for pollen viability. The interspecific hybrid was intermediate among parents, although in overall morphological characteristics more similar to the S. elaeagnifolium parent. However, pollen viability of the hybrid was very low (2.6%). The BC1 generation was intermediate in characteristics between the hybrid and the S. melongena parent, with pollen viability increasing to an average of 19.4%. The root system of the inter specific hybrid indicated that it is able to explore larger areas of the soil than the S. melongena parent. The phenolics profile of the fruit of the two parents and hybrid revealed a higher diversity in phenolic constituents in S. elaeagnifolium compared to S. melongena, where the major phenolic compound was chlorogenic acid, while the interspecific hybrid was intermediate. By using flow cytometry it was found that S. elaeagnifolium, S. melongena, and their interspecific hybrid were diploid, although the genome size of S. elaeagnifolium was slightly smaller than that of S. melongena. Our results represent the first report of successful development of backcross generations of common eggplant with a New World Solarium species. This makes available a relatively unexplored, phylogenetically distant genepool for eggplant breeding. The backcross materials obtained can make a relevant contribution to developing new eggplant cultivars with new nutritional and environmental properties.This work was undertaken as part of the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. The project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website: http://www.cwrdiversity.org/.Funding was also received from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Edgar Garcia-Fortea is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2017 call) contract. Giulio Mangino is grateful to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana for a predoctoral grant within the Santiago Grisolia programme (GRISOLIAP/2016/012). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a postdoctoral grant within the Juan de la Cierva programme (FCJI-2015-24835), and to Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana and Fons Social Europeu for a postdoctoral grant (APOSTD/2018/014).García-Fortea, E.; Gramazio, P.; Vilanova Navarro, S.; Fita, A.; Mangino, G.; Villanueva-Párraga, G.; Arrones-Olmo, A.... (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S-elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturae. 246:563-573. https://doi.org/10.1016/j.scienta.2018.11.018S563573246Acosta, M. C., Bernardello, G., Guerra, M., & Moscone, E. A. (2005). Karyotype analysis in several South American species ofSolanumandLycianthes rantonnei(Solanaceae). TAXON, 54(3), 713-723. doi:10.2307/25065428Afful, N. T., Nyadanu, D., Akromah, R., Amoatey, H. M., Annor, C., & Diawouh, R. G. (2018). Evaluation of crossability studies between selected eggplant accessions with wild relatives S. torvum, S. anguivi and S. aethopicum (Shum group). Journal of Plant Breeding and Crop Science, 10(1), 1-12. doi:10.5897/jpbcs2017.0695Arao, T., Takeda, H., & Nishihara, E. (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting ontoSolanum torvumrootstock. Soil Science and Plant Nutrition, 54(4), 555-559. doi:10.1111/j.1747-0765.2008.00269.xAbdul-Baki, A. A. (1992). Determination of Pollen Viability in Tomatoes. Journal of the American Society for Horticultural Science, 117(3), 473-476. doi:10.21273/jashs.117.3.473Aubriot, X., Singh, P., & Knapp, S. (2016). Tropical Asian species show that the Old World clade of ‘spiny solanums’ (SolanumsubgenusLeptostemonum pro parte: Solanaceae) is not monophyletic. Botanical Journal of the Linnean Society, 181(2), 199-223. doi:10.1111/boj.12412Chen, X., Zhang, J., Chen, Y., Li, Q., Chen, F., Yuan, L., & Mi, G. (2013). Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. Plant and Soil, 374(1-2), 121-130. doi:10.1007/s11104-013-1872-0Christodoulakis, N. S., Lampri, P.-N., & Fasseas, C. (2009). Structural and cytochemical investigation of the leaf of silverleaf nightshade (Solanum elaeagnifolium), a drought-resistant alien weed of the Greek flora. Australian Journal of Botany, 57(5), 432. doi:10.1071/bt08210Collonnier, C., Fock, I., Mariska, I., Servaes, A., Vedel, F., Siljak-Yakovlev, S., … Sihachakr, D. (2003). GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiology and Biochemistry, 41(5), 459-470. doi:10.1016/s0981-9428(03)00054-8Daunay, M. C., Chaput, M. H., Sihachakr, D., Allot, M., Vedel, F., & Ducreux, G. (1993). Production and characterization of fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Theoretical and Applied Genetics, 85-85(6-7), 841-850. doi:10.1007/bf00225027Dempewolf, H., Eastwood, R. J., Guarino, L., Khoury, C. K., Müller, J. V., & Toll, J. (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38(4), 369-377. doi:10.1080/21683565.2013.870629Dixon, R. A., & Harrison, M. J. (1990). Activation, Structure, and Organization of Genes Involved in Microbial Defense in Plants. Advances in Genetics, 165-234. doi:10.1016/s0065-2660(08)60527-1Dong, Z. Y., Wang, Y. M., Zhang, Z. J., Shen, Y., Lin, X. Y., Ou, X. F., … Liu, B. (2006). Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theoretical and Applied Genetics, 113(2), 196-205. doi:10.1007/s00122-006-0286-2Dpooležel, J., Binarová, P., & Lcretti, S. (1989). Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biologia Plantarum, 31(2), 113-120. doi:10.1007/bf02907241Gleddie, S., Keller, W. A., & Setterfield, G. (1986). Production and characterization of somatic hybrids between Solanum melongena L. and S. sisymbriifolium Lam. Theoretical and Applied Genetics, 71(4), 613-621. doi:10.1007/bf00264265Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936Hahlbrock, K., & Scheel, D. (1989). Physiology and Molecular Biology of Phenylpropanoid Metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 347-369. doi:10.1146/annurev.pp.40.060189.002023Heslop-Harrison, J., Heslop-Harrison, Y., & Shivanna, K. R. (1984). The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theoretical and Applied Genetics, 67(4), 367-375. doi:10.1007/bf00272876Isshiki, S., & Taura, T. (2003). Fertility restoration of hybrids betweenSolanum melongenaL. andS. aethiopicumL. Gilo Group by chromosome doubling and cytoplasmic effect on pollen fertility. Euphytica, 134(2), 195-201. doi:10.1023/b:euph.0000003883.39440.6dJarl, C. I., Rietveld, E. M., & de Haas, J. M. (1999). Transfer of fungal tolerance through interspecific somatic hybridisation between Solanum melongena and S. torvum. Plant Cell Reports, 18(9), 791-796. doi:10.1007/s002990050663Kashyap, V., Vinod Kumar, S., Collonnier, C., Fusari, F., Haicour, R., Rotino, G. ., … Rajam, M. . (2003). Biotechnology of eggplant. Scientia Horticulturae, 97(1), 1-25. doi:10.1016/s0304-4238(02)00140-1Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464Kaushik, P., Prohens, J., Vilanova, S., Gramazio, P., & Plazas, M. (2016). Phenotyping of Eggplant Wild Relatives and Interspecific Hybrids with Conventional and Phenomics Descriptors Provides Insight for Their Potential Utilization in Breeding. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00677King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106-111. doi:10.1016/j.scienta.2010.08.001Knapp, S., Sagona, E., Carbonell, A. K. Z., & Chiarini, F. (2017). A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys, 84, 1-104. doi:10.3897/phytokeys.84.12695Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Kreike, C. M., & Stiekema, W. J. (1997). Reduced recombination and distorted segregation in aSolanum tuberosum(2x) ×S.spegazzinii(2x) hybrid. Genome, 40(2), 180-187. doi:10.1139/g97-026Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15LESTER, R. (1998). Embryo and Endosperm Function and Failure inSolanumSpecies and Hybrids. Annals of Botany, 82(4), 445-453. doi:10.1006/anbo.1998.0695Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-xMekki, M. (2007). Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bulletin, 37(1), 114-118. doi:10.1111/j.1365-2338.2007.01094.xMeyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Noda, N., Kanno, Y., Kato, N., Kazuma, K., & Suzuki, M. (2004). Regulation of gene expression involved in flavonol and anthocyanin biosynthesis during petal development in lisianthus (Eustoma grandiflorum). Physiologia Plantarum, 122(3), 305-313. doi:10.1111/j.1399-3054.2004.00407.xPlazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-xProhens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030Sabatino, L., Iapichino, G., D’Anna, F., Palazzolo, E., Mennella, G., & Rotino, G. L. (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae, 228, 81-90. doi:10.1016/j.scienta.2017.10.020Scaldaferro, M., Chiarini, F., Santiñaque, F. F., Bernardello, G., & Moscone, E. A. (2012). Geographical pattern and ploidy levels of the weed Solanum elaeagnifolium (Solanaceae) from Argentina. Genetic Resources and Crop Evolution, 59(8), 1833-1847. doi:10.1007/s10722-012-9807-9Shichijo, C., Hamada, T., Hiraoka, M., Johnson, C., & Hashimoto, T. (1993). Enhancement of red-light-induced anthocyanin synthesis in sorghum first internodes by moderate low temperature given in the pre-irradiation culture period. Planta, 191(2). doi:10.1007/bf00199755Sihachakr, D., Haicour, R., Chaput, M.-H., Barrientos, E., Ducreux, G., & Rossignol, L. (1989). Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theoretical and Applied Genetics, 77(1), 1-6. doi:10.1007/bf00292307Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704Toppino, L., Valè, G., & Rotino, G. L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22(2), 237-250. doi:10.1007/s11032-008-9170-xVan der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37Varoquaux, F., Blanvillain, R., Delseny, M., & Gallois, P. (2000). Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 18(6), 233-242. doi:10.1016/s0167-7799(00)01448-7Vorontsova, M. S., Stern, S., Bohs, L., & Knapp, S. (2013). African spinySolanum(subgenusLeptostemonum, Solanaceae): a thorny phylogenetic tangle. Botanical Journal of the Linnean Society, 173(2), 176-193. doi:10.1111/boj.12053Wall, J. R. (1970). EXPERIMENTAL INTROGRESSION IN THE GENUSPHASEOLUS.I. EFFECT OF MATING SYSTEMS ON INTERSPECIFIC GENE FLOW. Evolution, 24(2), 356-366. doi:10.1111/j.1558-5646.1970.tb01767.xWang, Y.-M., Dong, Z.-Y., Zhang, Z.-J., Lin, X.-Y., Shen, Y., Zhou, D., & Liu, B. (2005). Extensive de Novo Genomic Variation in Rice Induced by Introgression From Wild Rice (Zizania latifolia Griseb.). Genetics, 170(4), 1945-1956. doi:10.1534/genetics.105.040964Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongena L.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250bWu, S.-B., Meyer, R. S., Whitaker, B. D., Litt, A., & Kennelly, E. J. (2012). Antioxidant Glucosylated Caffeoylquinic Acid Derivatives in the Invasive Tropical Soda Apple, Solanum viarum. Journal of Natural Products, 75(12), 2246-2250. doi:10.1021/np300553tZhou, X., Bao, S., Liu, J., Yang, Y., & Zhuang, Y. (2018). Production and characterization of an amphidiploid derived from interspecific hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Scientia Horticulturae, 230, 102-106. doi:10.1016/j.scienta.2017.11.02

    In Search of the High Road: Meaning and Evidence

    Get PDF
    This article is the first in a series to celebrate the 70th anniversary of the ILR Review. We will be highlighting important research themes that have been featured in the journal over its many years of publication. In this article, Paul Osterman reviews research on the quality of jobs and recent debates over “High Road” and “Low Road” approaches to employment practices. Scholars and policy advocates frequently utilize the distinction between High Road and Low Road firms as a framework for efforts to improve the quality of work in low-wage employers. This article assesses the logic and evidence that underlies this construct. The author provides a definition of the concept and examines the evidence behind the assumption that firms have a choice in how they design their employment policies. He then takes up the assertion that firms that adopt a High Road model can “do well by doing good” and adds precision to this claim by reviewing the evidence that a profit-maximizing firm would benefit from following the High Road path. The article concludes by suggesting a research agenda and providing a framework for policy that flows from the conclusions drawn from the existing research base
    corecore