62 research outputs found
Toll-like receptor 9 in breast cancer
The innate immune system recognizes microbial features leading to the activation of the adaptive immune system. The role of Toll-like receptor 9 (TLR9) is to recognize microbial DNA. In addition to immune cells, TLR9 is widely expressed in breast cancer in addition to other cancers. Breast cancer is the most common cancer in women, affecting approximately one in eight in industrialized countries. In the clinical setting, breast cancer is divided into three clinical subtypes with type-specific treatments. These subtypes are estrogen receptor (ER)-positive, HER2-positive and triple-negative (TNBC) breast cancer. TNBC is the most aggressive subtype that can be further divided into several subtypes. TNBC tumors lack ER, progesterone receptor and HER2 receptor. Therefore, the current clinically used targeted therapies are not suitable for TNBC treatment as TNBC is a collection of diseases rather than one entity. Some TNBC patients are cured with standard chemotherapy, while others rapidly die due to the disease. There are no clinically used iomarkers which would help in predicting which patients respond to chemotherapy.
During this thesis project, we discovered a novel good-prognosis TNBC subtype. These tumors have high TLR9 expression levels. Our findings suggest that TLR9 screening in TNBC patient populations might help to identify the patients that are at the highest risk regarding a relapse. To gain better understanding on the role of TLR9 in TNBC, we developed an animal model which mimicks this disease. We discovered that suppression of TLR9 expression in TNBC cells increases their invasive properties in hypoxia. In line with the clinical findings, TNBC cells with low TLR9 expression also formed more aggressive tumors in vivo. TLR9 expression did not, however, affect TNBC tumor responses to doxorubicin. Our results suggest that tumor TLR9 expression may affect chemotherapyrelated immune responses, however, this requires further investigation. Our other findings revealed that DNA released by chemotherapy-killed cells induces TLR9-mediated invasion in living cancer cells. Normally, extracellular self-DNA is degraded by enzymes, but during massive cell death, for example during chemotherapy, the degradation machinery may be exhausted and self-DNA is taken up into living cells activating TLR9. We also discovered that the malaria drug chloroquine, an inhibitor of autophagy and TLR9 signalling does not inhibit TNBC growth in vivo, independently of the TLR9 status. Finally, we found that ERα as well as the sex hormones estrogen and testosterone regulate TLR9 expression and activity in breast cancer cells in vitro. As a conclusion, we suggest that TLR9 is a potential biomarker in TNBC.
-------
Sisäsyntyisen immuniteetin tehtävä on tunnistaa mikrobien molekyylirakenteita, mikä saa aikaan adaptiivisen immuunijärjestelmän aktivoitumisen. Tollin kaltainen reseptori 9 (TLR9) on dna:ta tunnistava sisäsyntyisen immuniteetin reseptori, jota ilmennetään myös useissa syövissä, kuten rintasyövässä. Rintasyöpä on naisten yleisin syöpä, johon joka kahdeksas nainen sairastuu elämänsä aikana. Kliinisesti rintasyöpä jaotellaan kolmeen alatyyppiin, joista kolmoisnegatiivinen rintasyöpä on aggressiivisin. Tämän tyypin syövät eivät ilmennä hormonireseptoreja (estrogeeni- ja progesteronireseptori) tai HER2-reseptoria. Tästä johtuen kolmoisnegatiivisten potilaiden hoitoon ei voida käyttää rintasyövän nykyisten hoitosuositusten mukaisia täsmähoitoja. Kolmoisnegatiivinen rintasyöpä ei kuitenkaan ole yksi sairaus, koska molekyylitasolla sen on osoitettu koostuvan lukuisista, biologialtaan erilaisista syöpämuodoista. Tällä hetkellä kliinisessä käytössä ei ole biomarkkeria, jonka avulla kolmoisnegatiivisen rintasyövän alatyypit voisi erottaa toisistaan.
Löysimme uuden kolmoisnegatiivisen syövän alatyypin, joka ilmentää vain vähän TLR9-proteiinia. Tällä alatyypillä on erittäin huono ennuste ja tulostemme perusteella TRL9-tason selvittäminen voisi seuloa huonoennusteiset syövät kolmoisnegatiivisten syöpien joukosta. Kehitimme eläinmallin, jolla voidaan tutkia matalan ja korkean TLR9-tason vaikutuksia kolmoisnegatiivisten kasvainten hoitovasteeseen. Toinen löytömme oli, että kemoterapialla tapettujen syöpäsolujen dna saa aikaan elävien syöpäsolujen TLR9-välitteistä invaasiota. Normaalisti entsyymit hajoittavat yksilön oman solunulkoisen dna:n. Erikoistilanteissa, kuten syöpähoitojen yhteydessä, jolloin solukuolema on massiivista, elimistön oma koneisto ei ehdi tuhoamaan solunulkoista dna:ta ja sitä voi kertyä eläviin soluihin, joissa se aktivoi TLR9:n. Kolmanneksi havaitsimme, että malarialääke klorokiini, joka estää TLR9:n toimintaa ja jolla on syövänvastaisia vaikutuksia soluviljelyolosuhteissa, ei estänyt TLR9-positiivisten tai TLR9-negatiivisten kasvainten kasvua käyttämässämme eläinmallissa. Neljänneksi soluviljelykokeittemme tulokset osoittivat, että sukupuolihormonit estrogeeni ja testosteroni sekä estrogeenireseptori osallistuvat TLR9:n ilmentymisen ja aktiivisuuden säätelyyn.
Tuloksemme osoittavat, että TLR9 potentiaalinen biomarkkeri kolmoisnegatiivisessa rintasyövässä.Siirretty Doriast
Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy
Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between proinflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-similar to 1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/ CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR.Peer reviewe
Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity
BACKGROUND: The pim family genes encode oncogenic serine/threonine kinases which in hematopoietic cells have been implicated in cytokine-dependent signaling as well as in lymphomagenesis, especially in cooperation with other oncogenes such as myc, bcl-2 or Runx family genes. The Runx genes encode α-subunits of heterodimeric transcription factors which regulate cell proliferation and differentiation in various tissues during development and which can become leukemogenic upon aberrant expression. RESULTS: Here we have identified novel protein-protein interactions between the Pim-1 kinase and the RUNX family transcription factors. Using the yeast two-hybrid system, we were able to show that the C-terminal part of human RUNX3 associates with Pim-1. This result was confirmed in cell culture, where full-length murine Runx1 and Runx3 both coprecipitated and colocalized with Pim-1. Furthermore, catalytically active Pim-1 kinase was able to phosphorylate Runx1 and Runx3 proteins and enhance the transactivation activity of Runx1 in a dose-dependent fashion. CONCLUSION: Altogether, our results suggest that mammalian RUNX family transcription factors are novel binding partners and substrates for the Pim-1 kinase, which may be able to regulate their activities during normal hematopoiesis as well as in leukemogenesis
Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, Lactobacillus rhamnosus GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC pilus protein and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR, and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN, and PepA). The abundance of several known adhesins and candidate moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC, and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The mucus binding factor (MBF) was found most abundant in fructose grown biofilm cells whereas SpaC adhesin was identified specifically from planktonic cells growing on fructose. An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate mechanisms shaping the proteinaceous composition of GG cell surface, which potentially contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic.Peer reviewe
Pim-selective inhibitor DHPCC-9 reveals Pim kinases as potent stimulators of cancer cell migration and invasion
<p>Abstract</p> <p>Background</p> <p>Pim family kinases are small constitutively active serine/threonine-specific kinases, elevated levels of which have been detected in human hematopoietic malignancies as well as in solid tumours. While we and others have previously shown that the oncogenic Pim kinases stimulate survival of hematopoietic cells, we now examined their putative role in regulating motility of adherent cancer cells. For this purpose, we inhibited Pim kinase activity using a small molecule compound, 1,10-dihydropyrrolo[2,3-<it>a</it>]carbazole-3-carbaldehyde (DHPCC-9), which we had recently identified as a potent and selective inhibitor for all Pim family members.</p> <p>Results</p> <p>We now demonstrate that the Pim kinase inhibitor DHPCC-9 is very effective also in cell-based assays. DHPCC-9 impairs the anti-apoptotic effects of Pim-1 in cytokine-deprived myeloid cells and inhibits intracellular phosphorylation of Pim substrates such as Bad. Moreover, DHPCC-9 slows down migration and invasion of cancer cells derived from either prostate cancer or squamocellular carcinoma patients. Silencing of Pim expression reduces cell motility, while Pim overexpression enhances it, strongly suggesting that the observed effects of DHPCC-9 are dependent on Pim kinase activity. Interestingly, DHPCC-9 also abrogates NFATc-dependent migration of cancer cells, implying that NFATc factors mediate at least part of the pro-migratory effects of Pim kinases.</p> <p>Conclusions</p> <p>Altogether, our data indicate that DHPCC-9 is not only a powerful tool to investigate physiological effects of the oncogenic Pim family kinases, but also an attractive molecule for drug development to inhibit invasiveness of Pim-overexpressing cancer cells.</p
CD73 regulates zoledronate-induced lymphocyte infiltration in triple-negative breast cancer tumors and lung metastases
Introduction: Bisphosphonates (BPs) are bone-protecting osteoclast inhibitors, typically used in the treatment of osteoporosis and skeletal complications of malignancies. When given in the adjuvant setting, these drugs may also prevent relapses and prolong overall survival in early breast cancer (EBC), specifically among postmenopausal patients. Because of these findings, adjuvant nitrogen-containing BPs (N-BPs), such as zoledronate (ZOL), are now the standard of care for high-risk EBC patients, but there are no benefit-associated biomarkers, and the efficacy remains low. BPs have been demonstrated to possess anti-tumor activities, but the mechanisms by which they provide the beneficial effects in EBC are not known. Methods: We used stably transfected 4T1 breast cancer cells together with suppression of CD73 (sh-CD73) or control cells (sh-NT). We compared ZOL effects on tumor growth and infiltrating lymphocytes (TILs) into tumors and lung metastases using two mouse models. B cell depletion was performed using anti-CD20 antibody. Results: Sh-CD73 4T1 cells were significantly more sensitive to the growth inhibitory effects of n-BPs in vitro. However, while ZOL-induced growth inhibition was similar between the tumor groups in vivo, ZOL enhanced B and T lymphocyte infiltration into the orthotopic tumors with down-regulated CD73. A similar trend was detected in lung metastases. ZOL-induced tumor growth inhibition was found to be augmented with B cell depletion in sh-NT tumors, but not in sh-CD73 tumors. As an internal control, ZOL effects on bone were similar in mice bearing both tumor groups. Discussion: Taken together, these results indicate that ZOL modifies TILs in breast cancer, both in primary tumors and metastases. Our results further demonstrate that B cells may counteract the growth inhibitory effects of ZOL. However, all ZOL-induced TIL effects may be influenced by immunomodulatory characteristics of the tumor.Peer reviewe
Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, Lactobacillus rhamnosus GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC pilus protein and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR, and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN, and PepA). The abundance of several known adhesins and candidate moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC, and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The mucus binding factor (MBF) was found most abundant in fructose grown biofilm cells whereas SpaC adhesin was identified specifically from planktonic cells growing on fructose. An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate mechanisms shaping the proteinaceous composition of GG cell surface, which potentially contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic
CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer
CD73 is a cell surface ecto-5 ' -nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5 '-(alpha, beta -methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial-mesenchymal transition
Targeting DNA Homologous Repair Proficiency With Concomitant Topoisomerase II and c-Abl Inhibition
Critical DNA repair pathways become deranged during cancer development. This vulnerability may be exploited with DNA-targeting chemotherapy. Topoisomerase II inhibitors induce double-strand breaks which, if not repaired, are detrimental to the cell. This repair process requires high-fidelity functional homologous recombination (HR) or error-prone non-homologous end joining (NHEJ). If either of these pathways is defective, a compensatory pathway may rescue the cells and induce treatment resistance. Consistently, HR proficiency, either inherent or acquired during the course of the disease, enables tumor cells competent to repair the DNA damage, which is a major problem for chemotherapy in general. In this context, c-Abl is a protein tyrosine kinase that is involved in DNA damage-induced stress. We used a low-dose topoisomerase II inhibitor mitoxantrone to induce DNA damage which caused a transient cell cycle delay but allowed eventual passage through this checkpoint in most cells. We show that the percentage of HR and NHEJ efficient HeLa cells decreased more than 50% by combining c-Abl inhibitor imatinib with mitoxantrone. This inhibition of DNA repair caused more than 87% of cells in G2/M arrest and a significant increase in apoptosis. To validate the effect of the combination treatment, we tested it on commercial and patient-derived cell lines in high-grade serous ovarian cancer (HGSOC), where chemotherapy resistance correlates with HR proficiency and is a major clinical problem. Results obtained with HR-proficient and deficient HGSOC cell lines show a 50–85% increase of sensitivity by the combination treatment. Our data raise the possibility of successful targeting of treatment-resistant HR-proficient cancers.</p
Evaluation of [F-18]F-DPA as a target for TSPO in head and neck cancer under normal conditions and after radiotherapy
Background Many malignant tumours have increased TSPO expression, which has been related to a poor prognosis. TSPO-PET tracers have not comprehensively been evaluated in peripherally located tumours. This study aimed to evaluate whether N,N-diethyl-2-(2-(4-([F-18]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ([F-18]F-DPA) can reflect radiotherapy (RT)-induced changes in TSPO activity in head and neck squamous cell carcinoma (HNSCC). Methods RT was used to induce inflammatory responses in HNSCC xenografts and cells. [F-18]F-DPA uptake was measured in vivo in non-irradiated and irradiated tumours, followed by ex vivo biodistribution, autoradiography, and radiometabolite analysis. In vitro studies were performed in parental and TSPO-silenced (TSPO siRNA) cells. TSPO protein and mRNA expression, as well as tumour-associated macrophages (TAMs), were also assessed. Results In vivo imaging and ex vivo measurement revealed significantly higher [F-18]F-DPA uptake in irradiated, compared to non-irradiated tumours. In vitro labelling studies with cells confirmed this finding, whereas no effect of RT on [F-18]F-DPA uptake was detected in TSPO siRNA cells. Radiometabolite analysis showed that the amount of unchanged [F-18]F-DPA in tumours was 95%, also after irradiation. PK11195 pre-treatment reduced the tumour-to-blood ratio of [F-18]F-DPA by 73% in xenografts and by 88% in cells. TSPO protein and mRNA levels increased after RT, but were highly variable. The proportion of M1/M2 TAMs decreased after RT, whereas the proportion of monocytes and migratory monocytes/macrophages increased. Conclusions [F-18]F-DPA can detect changes in TSPO expression levels after RT in HNSCC, which does not seem to reflect inflammation. Further studies are however needed to clarify the physiological mechanisms regulated by TSPO after RT
- …