1,167 research outputs found

    Evolving ‘self’-management: exploring the role of social network typologies on individual long-term condition management

    No full text
    BackgroundWhilst there has been a focus on the importance of social support for managing long‐term conditions, there has been little specific focus on the characteristics of social networks that shape self‐management. Policy emphasis is placed on individual responsibility for self‐care, and this influences commissioning of health‐care services. Assumptions are often made by policymakers about accessibility and preference for support and the influence of the social context on chronic illness management. ObjectiveTo examine the social networks of individuals with long‐term conditions and identify how the characteristics of their composition influences support needs. Design, setting and participantsThirty participants completed initial face‐to‐face in‐depth interviews, telephone follow‐ups and final face‐to‐face interviews in the north‐west of England. A longitudinal qualitative design was used to elicit the subtle changes in relationships over a year. FindingsThe findings suggest that the relationships which constitute a social network influence perceived support needs and attitudes to self‐management. The amalgamation of relationships was characterized into three network typologies (family focused, friend focused or health‐care professional focused) according to which types of relationships were dominant. In the absence of support, accounts highlighted a small number of substitutes who could provide support at times of critical need. DiscussionThis study challenges the notion of ‘self’‐management as an individual construct as many of the practices of illness management involved the support and/or negotiation of roles with others. By examining the nuances of relationships, this study has highlighted the tacit boundaries of practical and emotional support provision.<br/

    Climate change influences foliar nutrition and metabolism of red maple (Acer rubrum) trees in a northern hardwood forest

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blagden, M., Harrison, J. L., Minocha, R., Sanders-DeMott, R., Long, S., & Templer, P. H. Climate change influences foliar nutrition and metabolism of red maple (Acer rubrum) trees in a northern hardwood forest. Ecosphere, 13(2), (2022): e03859. https://doi.org/10.1002/ecs2.3859.Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid- and high-latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, Îł-aminobutyric acid, valine, leucine, and isoleucine). Treatment-specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment-related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.This research was supported by an NSF Long Term Ecological Research (LTER) Grant to Hubbard Brook (NSF 1114804 and 1637685) and an NSF CAREER grant to PHT (NSF DEB1149929). RSD was supported by NSF DGE0947950, a Boston University (BU) Dean's Fellowship, and the BU Program in Biogeoscience. Jamie Harrison was supported by a BU Dean's Fellowship. Megan Blagden was supported by a BU Undergraduate Research Opportunity Program fellowship. This manuscript is a contribution to the Hubbard Brook Ecosystem Study. Hubbard Brook is part of the LTER network, which is supported by the NSF

    Arsenic in North Carolina: Public Health Implications

    Get PDF
    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services (NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806 ÎŒg/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes

    Collecting Symptoms and Sensor Data With Consumer Smartwatches (the Knee OsteoArthritis, Linking Activity and Pain Study):Protocol for a Longitudinal, Observational Feasibility Study

    Get PDF
    BACKGROUND: The Knee OsteoArthritis, Linking Activity and Pain (KOALAP) study is the first to test the feasibility of using consumer-grade cellular smartwatches for health care research. OBJECTIVE: The overall aim was to investigate the feasibility of using consumer-grade cellular smartwatches as a novel tool to capture data on pain (multiple times a day) and physical activity (continuously) in patients with knee osteoarthritis. Additionally, KOALAP aimed to investigate smartwatch sensor data quality and assess whether engagement, acceptability, and user experience are sufficient for future large-scale observational and interventional studies. METHODS: A total of 26 participants with self-diagnosed knee osteoarthritis were recruited in September 2017. All participants were aged 50 years or over and either lived in or were willing to travel to the Greater Manchester area. Participants received a smartwatch (Huawei Watch 2) with a bespoke app that collected patient-reported outcomes via questionnaires and continuous watch sensor data. All data were collected daily for 90 days. Additional data were collected through interviews (at baseline and follow-up) and baseline and end-of-study questionnaires. This study underwent full review by the University of Manchester Research Ethics Committee (#0165) and University Information Governance (#IGRR000060). For qualitative data analysis, a system-level security policy was developed in collaboration with the University Information Governance Office. Additionally, the project underwent an internal review process at Google, including separate reviews of accessibility, product engineering, privacy, security, legal, and protection regulation compliance. RESULTS: Participants were recruited in September 2017. Data collection via the watches was completed in January 2018. Collection of qualitative data through patient interviews is still ongoing. Data analysis will commence when all data are collected; results are expected in 2019. CONCLUSIONS: KOALAP is the first health study to use consumer cellular smartwatches to collect self-reported symptoms alongside sensor data for musculoskeletal disorders. The results of this study will be used to inform the design of future mobile health studies. Results for feasibility and participant motivations will inform future researchers whether or under which conditions cellular smartwatches are a useful tool to collect patient-reported outcomes alongside passively measured patient behavior. The exploration of associations between self-reported symptoms at different moments will contribute to our understanding of whether it may be valuable to collect symptom data more frequently. Sensor data-quality measurements will indicate whether cellular smartwatch usage is feasible for obtaining sensor data. Methods for data-quality assessment and data-processing methods may be reusable, although generalizability to other clinical areas should be further investigated. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/10238

    UDP-Galactose 4â€Č-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster

    Get PDF
    In both humans and Drosophila melanogaster, UDP-galactose 4â€Č-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans

    Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption.

    Get PDF
    BACKGROUND: Diet is a major contributor to metabolic disease risk, but there is controversy as to whether increased incidences of diseases such as non-alcoholic fatty liver disease arise from consumption of saturated fats or free sugars. Here, we investigate whether a sub-set of triacylglycerols (TAGs) were associated with hepatic steatosis and whether they arise from de novo lipogenesis (DNL) from the consumption of carbohydrates. RESULTS: We conduct direct infusion mass spectrometry of lipids in plasma to study the association between specific TAGs and hepatic steatosis assessed by ultrasound and fatty liver index in volunteers from the UK-based Fenland Study and evaluate clustering of TAGs in the National Survey of Health and Development UK cohort. We find that TAGs containing saturated and monounsaturated fatty acids with 16-18 carbons are specifically associated with hepatic steatosis. These TAGs are additionally associated with higher consumption of carbohydrate and saturated fat, hepatic steatosis, and variations in the gene for protein phosphatase 1, regulatory subunit 3b (PPP1R3B), which in part regulates glycogen synthesis. DNL is measured in hyperphagic ob/ob mice, mice on a western diet (high in fat and free sugar) and in healthy humans using stable isotope techniques following high carbohydrate meals, demonstrating the rate of DNL correlates with increased synthesis of this cluster of TAGs. Furthermore, these TAGs are increased in plasma from patients with biopsy-confirmed steatosis. CONCLUSION: A subset of TAGs is associated with hepatic steatosis, even when correcting for common confounding factors. We suggest that hepatic steatosis risk in western populations is in part driven by increased DNL following carbohydrate rich meals in addition to the consumption of saturated fat

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Management of nystagmus in children : a review of the literature and current practice in UK specialist services

    Get PDF
    Nystagmus is an eye movement disorder characterised by abnormal, involuntary rhythmic oscillations of one or both eyes, initiated by a slow phase. It is not uncommon in the UK and regularly seen in paediatric ophthalmology and adult general/strabismus clinics. In some cases, it occurs in isolation, and in others, it occurs as part of a multisystem disorder, severe visual impairment or neurological disorder. Similarly, in some cases, visual acuity can be normal and in others can be severely degraded. Furthermore, the impact on vision goes well beyond static acuity alone, is rarely measured and may vary on a minute-to-minute, day-to-day or month-to-month basis. For these reasons, management of children with nystagmus in the UK is varied, and patients report hugely different experiences and investigations. In this review, we hope to shine a light on the current management of children with nystagmus across five specialist centres in the UK in order to present, for the first time, a consensus on investigation and clinical management
    • 

    corecore