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Abstract
Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water
systems. We set out to comprehensively examine statewide arsenic trends and identify areas of
public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated
over an eleven-year period using the North Carolina Department of Health and Human Services
(NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well
measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic
measurements and geographical coordinates for database entries were mapped using Geographic
Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy
(BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic
values across the state and identify trends for unmonitored locations. Of the approximately 63,000
monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806
μg/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal
counties of concern and demonstrate a historical pattern of elevated arsenic in some counties,
particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data
in the context of populations using private well water and identify counties for targeted
monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our
BME estimate revealed arsenic trends at unmonitored locations within counties and better
predicted well concentrations when compared to the classical kriging method. This study reveals
relevant information on the location of arsenic-contaminated private domestic wells in North
Carolina and indicates potential areas at increased risk for adverse health outcomes.
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INTRODUCTION
Ingestion of arsenic through drinking water is implicated in heart disease, neurological
abnormalities, as well as cancers of the skin, lung, kidney, and bladder (NRC 2001). The
United States Environmental Protection Agency (EPA) regulates arsenic in public drinking
water supplies at a maximum contaminant level (MCL) of 10 μg/L (EPA 2010). Although
this standard is enforceable in public water systems via the Safe Drinking Water Act, there
is no federal regulatory standard for domestic well waters. Approximately 14 percent (about
42 million people) of the U.S. population obtains water from unregulated private domestic
wells (Kenny et al. 2009). It is estimated that domestic well users in the U.S. carry an excess
lifetime risk of bladder and lung cancer of 66 people per million people, almost five times
higher than that estimated for public well users (Kumar et al. 2010).

Although arsenic exposure through drinking water is documented worldwide (Mukherjee et
al. 2006), there is a paucity of data in the U.S.. For example, in a survey of U.S. drinking
water supplies, many of the Mid-Atlantic states had insufficient data with less than 10% of
counties represented (Welch et al. 1999). To help fill this void, regional evaluations of
groundwater arsenic in Appalachia (Shiber 2005), Idaho (Hagan 2004), Maine (Yang et al.
2009), Michigan (Kim et al. 2002), Nevada (Shaw et al. 2005; Walker et al. 2006), New
England (Ayotte et al. 2003), and New Hampshire (Peters et al. 1999) have provided data
beyond those collected in nationwide studies and have demonstrated contamination of
drinking sources at spatial scales finer than the county level. In addition, while the USGS
provides routine ambient well monitoring nationwide, data gathered currently represent only
a small fraction of groundwater sources. Domestic wells are not often monitored in such
nationwide programs and may more adequately reflect exposure to unregulated
contaminated water.

It is known that areas of North Carolina contain naturally occurring arsenic deposits
including the geological region of Carolina terrane (or Carolina slate belt) making it an ideal
area for further investigation and public health efforts (Foley et al. 2001). An initial study by
Pippin et al., (2005), characterized arsenic occurrence in North Carolina groundwater
between 1996-2004 and employed classic kriging techniques to map arsenic probabilities in
the state. More recently, Kim et al. (in press), characterized geologic determinants of arsenic
in Orange County, North Carolina. Our work builds upon earlier characterization of arsenic
in North Carolina wells by developing methods to map historical contamination for the
purposes of protecting public health. Importantly, the number of individuals in North
Carolina currently using domestic wells for drinking water is estimated at 2.3 million
(Kenny et al. 2009). North Carolina has the fourth-largest state population in the U.S. using
private groundwater wells as a drinking source and is exceeded only by Michigan,
California, and Pennsylvania (Kenny et al. 2009). Many states, such as North Carolina, still
remain understudied for the presence of arsenic in drinking water at a statewide level. Here,
we present results obtained from a statewide program to monitor unregulated private
domestic wells.

Given the known health risks and occurrence of arsenic in drinking water, we set out to
identify areas of concern and quantitatively assess concentrations in domestic wells
throughout North Carolina. To assess arsenic trends in monitored private domestic wells, we
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applied a novel geocoding scheme and mapped arsenic levels in wells using standard
Geographical Information System (GIS) techniques (Nuckols et al. 2004; Miranda et al.
2002; Holton 2002; Bellander et al. 2001). To estimate arsenic values at unmonitored
locations, we then applied a novel Bayesian Maximum Entropy (BME) framework
(Christakos 1990, 2000; Serre and Christakos 1999; De Nazelle et al. 2010) to predict
arsenic contamination across the state and to examine areas of interest. These analytical
techniques were applied to more than 60,000 domestic well water arsenic measures collected
by the North Carolina Department of Health and Human Services (NCDHHS) dating back to
1998. In this work, we identify spatial and temporal arsenic trends in North Carolina
domestic wells and indicate specific locations and populations of concern. Importantly, the
geocoding and geostatistical methods presented here can be applied to track contaminant
trends in other states. Our results indicate a large number of contaminated wells in North
Carolina and suggest that ongoing monitoring of well water contaminants is prudent.
Moreover, these data provide new information of specific areas in North Carolina where
targeted well monitoring programs can be used in a cost-effective manner.

MATERIALS AND METHODS
Data collection

Domestic well water samples were collected by the NCDHHS Division of Public Health
(DPH) State Laboratory of Public Health and Epidemiology Section which provides
groundwater monitoring assistance to North Carolina homeowners. Following DPH
guidelines, local health department officials collected water from homeowners’ indoor,
outdoor, or well tap after allowing the water to run for 5-10 minutes. Arsenic analyses were
performed by the NCDHHS Laboratory for Environmental Inorganic Chemistry. Samples
were transported to the DPH State Laboratory of Public Health and analyzed within 48
hours as per EPA Method 200.8 Revision 5.4 via inductively coupled plasma mass
spectrometry (ICP-MS) with adherence to formal quality assurance/quality control (QA/QC)
protocols (EPA 1994). Sample aliquots were acidified with nitric acid to below a pH of 2.0
for at least sixteen hours prior to ICP-MS analysis. A 50-mL subsample was then digested at
95°C for at least 2 h. For samples with high amounts of undissolved particulates, the
digestate was filtered through a 0.45 μm filter to prevent damage to the analytical
instrumentation. This method detects for total arsenic; species of As(III) and As(V) were not
differentiated. The NCDHHS detection limit for arsenic had shifted in the past decade. In
early 2000, the detection limit decreased from 10.0 to 1.0 μg/L. More recently, the detection
limit was raised to 5.0 μg/L – the level at which the laboratory presently operates. The
laboratory maintains QC requirements of Fortified Blank recoveries of 95 – 105% and
reagent blanks must show no contamination. In all lab analyses yttrium, rhodium, lutetium
were included as internal standards to account for instrument drift and physical
interferences. Every QC requirement must be met for the sample analysis to be approved by
the laboratory manager. Analyses were then entered into an extensive electronic database
maintained by the State Laboratory of Public Health.

Electronic database formatting
Results from arsenic well water analyses were housed in an electronic database containing
informational fields for arsenic concentration, well location ID, county name, global
positioning system (GPS) location (if available), well owner address, and date collected. We
analyzed 68,836 electronically available well water records of measured arsenic
concentrations collected between October 19, 1998 and February 25, 2010. Data cleaning of
the arsenic database excluded entries with insufficient information on location or those with
improper/incomplete chemical analysis. We required that entries included in this study
provided the following minimum information: a county name, a valid sampling date, and an
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approved laboratory chemical analysis for arsenic. The resulting comprehensive database of
63,856 well measures was used for all subsequent analyses.

Descriptive statistics, heat map generation, and county ranking
For all analyses, arsenic measurements below the detection limit (DL) were treated as 0.5
times the DL (0.5 × DL). Descriptive statistics were calculated using Spotfire DecisionSite
8.1 (TIBCO, Palo Alto, CA) for each of the 100 North Carolina counties. Heat maps to
visualize temporal county trends were prepared using Partek Genomics Suite 6.4 (St. Louis,
Missouri). Hierarchical cluster analysis using Euclidean distance as a measure was used to
identify relationships over time among the top 35 counties exceeding the standard (Eisen et
al. 1998). Furthermore, counties were ranked by 1) the percentage of wells exceeding the
EPA standard over the full time period examined, and 2) the percentage of wells exceeding
the EPA standard multiplied by the percentage of county population using self-supplied
domestic wells (data reported by Kenny et al. 2009). We considered the current EPA MCL
of 10 μg/L as the threshold, although the regulatory standard (originally 50 μg/L) was
lowered over the course of data collection in this study.

Four-class geocoding algorithm and error validation scheme
A geocoding algorithm was developed to extract spatial coordinates and associated location
error for the 63,856 private well measurements contained in the database. A four-class
strategy, detailed below, was used to assign each data entry, l, with a spatial coordinate
sl=(s1,s2)l, where s1 and s2 were the longitude and latitude best-representing the well
location given the level of recorded information: GPS, street address, zip code, or county.
The first of the four classes (Class I) was represented by data entries with available GPS
coordinates, sl(GPS). For wells with reported GPS locations, geographical coordinates were
standardized to decimal degrees format. Standardized GPS coordinates were visualized in
ESRI ArcGIS™ software Version 9.0 (Redlands, CA). Well locations were classified as
Class I when GPS coordinates were available and within the longitude/latitude boundaries of
North Carolina. The second class (Class II) assigned geocoded owner address (GOA)
coordinates, sl(GOA), to data entries based on street address. To geocode the data, we
applied a multi-stage geocoding process in which a series of local and national reference
files were used sequentially in order from most comprehensive spatial detail to least as
follows: a North Carolina point reference file (courtesy of NCDHHS Spatial Analysis
Group), followed by a North Carolina Department of Transportation line reference file, then
followed by a U.S. Street Address line reference file (Tele Atlas Dynamap Transportation,
2003). Resulting from this process, match scores of 0-100 were associated with each
successfully geocoded address coordinate, sl(GOA). To determine a match score threshold at
which each reference file provided acceptable coordinates, we developed a method using
one-way analysis of variance (ANOVA) to select acceptable match scores based on the
distance between GPS and geocoded coordinates, dl=∥sl(GPS)-sl(GOA)∥. We calculated the
average distance, dl, for wells with match score of 100 (perfectly matched addresses) to
serve as the referent group. The remaining wells with a geocoded location were binned into
deciles according to match score (e.g. 99-90, 89-80, 79-70 and so on) and the average
distance dl was also calculated for each match score decile. We used ANOVA to compare
the average distance dl to identify which match score deciles had an average distance dl that
was not statistically significantly different (=0.05) from the average distance dl obtained
with a match score of 100. Using this criterion, point file match scores of 70 and higher and
line file match scores of 60 and above were considered acceptable for describing geocoded
well locations. A data point was classified as Class II when it was not a Class I, was
successfully geocoded by a given reference file with a match score above the match score
threshold, and the county name included in the owner address matched the recorded county
of sampling location. Class II data entries were assigned a single coordinate pair
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representing the geocoded owner address coordinates sl(GOA) resulting from the multi-
stage geocode process. The third class (Class III) included zip code centroid coordinates
calculated and assigned using ArcGIS™. A well location was categorized as Class III when
it was neither a Class I or Class II, was inside the North Carolina boundary and county of
well location and a zip code was available to geocode. Class III data entries were assigned
zip code centroid coordinates. The fourth class (Class IV) included county centroid
coordinates for each of the 100 counties in North Carolina. A well location was considered
Class IV when it did not meet the requirements of any of the previous classes, but a county
centroid coordinate was available. Class IV data entries were assigned county centroid
coordinates. Each entry in the database was categorized as one of the four aforementioned
classes and the resulting four-class geocoded data was used in all subsequent analyses. In
summary, the geocoding process assigned one of each of the following four classes to every
arsenic measure in the database: Class I (GPS location), Class II (street address), Class III
(zip code centroid), Class IV (county centroid). Wells with assigned geographic coordinates
and corresponding arsenic concentration data were visualized using ArcGIS™ ESRI version
9.0 software.

The four-class geocoding scheme enabled maximum incorporation of spatial information
contained in the private well database. Next, we assessed error associated with each of the
four classes to account for uncertainty introduced by the geocoding process. For Class I,
GPS device positional error resulted from inaccuracies in satellite triangulation. Positional
error associated with GPS instrumentation found by others was between 5 and 25 meters
(Wing and Eklund 2007; Hulbert and French 2001). Without rigorous quantification of GPS
device error by the NCDHHS, a conservative Class I error of 50 m was estimated for the
GPS coordinates sl(GPS). For Class II, the location error of geocoded street address
coordinates sl(GOA) was considered to be a combined effect of two error sources: character-
matching error as captured by the match score and inaccuracy in reference file coordinates.
For Class II data entries we estimated the location error as the distance dl=∥sl(GPS)-sl(GOA)
∥ between the well GPS location and the street address geocoded location. Class II location
error was described as a function of match score grouped into deciles (e.g. 100, 90-99,
80-89, 70-79). The location error for a geocoded owner address coordinate sl(GOA)
corresponding to a given match score was assigned the median of the distances dl in the
corresponding match score bin (Supplemental Figure S3). For Classes III and IV, entries
provided limited locational information, thus data entries were assigned an error estimate of
the median radius of zip code or county, respectively.

Spatiotemporal geostatistical estimation of arsenic concentrations
In addition to mapping the actual historical arsenic measures contained in the database, a
BME geostatistical framework was applied to estimate concentrations for locations at which
no data were available. We let X(s’,t) be a space/time random field (S/TRF) representing the
yearly arsenic concentration at location s’ and year t. We defined the yearly county arsenic
concentration at location s and time t as the areal average of X(s’,t) over an area the size of a
county around s, i.e.

(1)

where AR(s) was an area of radius R around s, and the subscript R in ZR emphasized the
county level observation scale over which arsenic was estimated, which in this work
corresponded to the median county radius in North Carolina (approximately 11 km).
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First, kriging principles were applied to estimate arsenic concentrations across space and
time using only the county averages. The average arsenic concentrations were calculated
within the boundary of any county i. This county average provided an exact (hard) value
zhard(i,t) for the S/TRF Z(si,t) at the centroid si of county i. These hard data were processed
with the well-documented kriging method (Cressie 1990) to model the mean trend (assumed
constant) and covariance cZ(p,p’) of the S/TRF Z(s,t) where p=(s,t) was the space/time
coordinate and obtain kriging estimates of county arsenic concentrations at a grid of
unmonitored locations.

To incorporate the geocoded information and refine the spatial resolution of our arsenic
estimate, we developed a BME framework to account for errors associated with geocoded
classes by generating soft data. The soft data for yearly arsenic county concentrations were
constructed at soft data points located on a static fine resolution grid across the state. The

mean μj (Equation 2) and variance  (Equation 3) for the yearly county arsenic
concentration incorporated geocoding distance error and assigned weight wl (Equation 4).
As such, the arsenic value at a given soft data point sj was assigned a mean and variance
calculated as the weighted sample average and sample variance, respectively, of the
geocoded private well data that were within a distance R of sj, where the weights decreased
as a function of increased geocoding location error, i.e.

(2)

(3)

where Asl and n served as the l-th and total number of measured arsenic values within R of
sj, respectively, and wl described a weight that was inversely related to the location error l of
the l-th arsenic data point. Weights were calculated as

(4)

which captured the chance that well l was correctly placed within a circle of radius R despite
its location error εl. To prevent the probability of estimating a negative concentration, we
defined the soft data using a Gaussian probability distribution function truncated below zero,
with mean and variance calculated from Equations 2 and 3. Equations (2-4) provided values
for the soft data points sj, which together with the hard data zhard(i,t) at the county centroids
si, constituted the site specific knowledge S that was incorporated to produce refined
estimates of yearly county arsenic concentrations using the BME method (Christakos 1990,
2000; De Nazelle et al. 2010) and its BMElib numerical implementation (Serre and
Christakos 1999; Christakos et al. 2002). The estimated values were mapped using
ArcGIS™ ESRI version 9.0 software.

Lastly, to quantitatively evaluate the difference in performance of the kriging and BME
methods for accurate estimation of arsenic concentrations, we applied a cross-validation
approach. Each data point was sequentially removed from the estimation scheme and then
re-estimated using the remaining space/time data points (Money et al. 2009). Mean square
error (MSE) was then derived from this cross-validation process and calculated as the sum
of the squared differences between the re-estimated and original values.
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USGS and EPA database retrieval
Archived arsenic monitoring data from the online Water Quality section of the National
Water Information System (NWIS) and STORET database were obtained electronically
(USGS 2010). Basic statistics were compared from the NCDHHS database with the field
sample dataset from the NWIS in North Carolina.

RESULTS
Arsenic levels exceed EPA standard in North Carolina monitored wells

The historical database of monitored well data revealed increased well sampling in recent
years. Prior to 2008 the NCDHHS sampled over 4,000 wells per year with a notable increase
to over 10,000 wells per year from 2008 to present (Supporting Information Table S1).
Across the state, a total of 1,436 well measurements (2.25%) exceeded the current standard
of 10 μg/L and 233 exceeded 50 μg/L (Table 1; Supporting Information Table S1 and Table
S2). Over the 11-year period, 7,713 samples measured above the detection limit,
representing approximately 12% of all private wells tested (Table 1). The remaining
domestic well water records were below the detection limit (Supporting Information Table
S2).

To systematically determine counties with elevated arsenic levels, counties were ranked by
the percentage of wells that exceeded the EPA standard across the eleven-year period
(Figure 1; Table 1; Supporting Information Table S1). The top ten counties with the highest
percentage of wells containing elevated arsenic levels were in order: Stanly, Union, Anson,
Montgomery, Dare, Randolph, Davidson, Alexander, Cleveland, and Currituck (Supporting
Information Table S1). Of the measured wells that exceeded the EPA standard, nearly 70%
were within these ten counties. The remaining 30% of wells that exceeded the EPA standard
were collected from the remaining ninety North Carolina counties (Table 1). To identify
counties that might exhibit similar arsenic trends over time, cluster analysis was performed.
Members of the top ten counties (e.g. Union, Stanly, Alexander) had statistical temporal
relationships in arsenic levels across the 11-year period (Supporting Information Figure S1).
This comprehensive temporal assessment revealed a historical pattern of arsenic levels in
counties along the Carolina terrane, demonstrating that some counties appear to have been
high for over a decade.

Table 1 also reports the demographics of county and state population (and percent of total)
using private domestic well water (Kenny et al. 2009). Notably, in some of the highly
ranked counties, such as Randolph County, nearly 48% of the county population uses private
domestic wells as a primary water source. Counties were assigned a second ranking based
on the percentage of population using self-supplied domestic wells multiplied by the
percentage of wells exceeding the EPA standard. The following top ten counties were
identified: Stanly, Union, Montgomery, Randolph, Lincoln, Pender, Dare, Moore, Person,
and Transylvania.

A four-class geocoding algorithm increased spatial information
The geocoding scheme developed in this work categorized the data into four classes
(Supporting Information Figure S2). Approximately 3.6% (2,295 well measures) of the
database had original GPS coordinates available and represent Class I. Geocoded well
locations representing Class II comprised 68.9% (43,991 well measures) of the database.
The remaining well locations were categorized as Class III (13.3%) and Class IV (14.2%) by
assigning zip code and county centroid coordinates, respectively.
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A geocoding location error was assessed for each geocoding class (Supporting Information
Table S3). A conservative estimate of 50 m location error for Class I was established based
on previously reported quantification of GPS error (Wing and Eklund 2007; Hulbert and
French 2001). Class II location errors were determined as a function of match score.
Acceptable geocoding match scores were established at 60-100 and the corresponding
median location error ranged between 78 meters and 758 meters (Supporting Information
Figure S3, Table S3). Location error for Class III and Class IV was approximated as half the
median radius of a zip code or county, 3,500 and 11,000 m, respectively.

Mapping of arsenic in monitored private domestic wells
We applied the results of our four-class geocoding process to map arsenic levels in
monitored wells and identify regions of arsenic contamination in North Carolina (Figure 2).
As an example, we show locations of the geocoded wells and those that exceeded the EPA
standard in 2009 (Figure 2A). Notably, wells exceeding the EPA standard were located
primarily in the south-central region of the state. The calculated county averages for 2009
are also provided (Figure 2B). The highest county average was observed in Stanly County,
where the average of 89 domestic well records approached the 10 μg/L EPA standard.

Spatiotemporal modeling of estimated arsenic concentrations
Next, we set out to refine the spatial scale and apply the results of the geocoding process
using two geostatistical estimation methods, namely 1) the classical kriging method and 2)
our novel BME framework. Using the classical method that incorporates no distance error
information, the spatial distribution of kriging estimates of county arsenic concentrations
across North Carolina is represented (Figure 2C). The kriging estimates correspond to the
spatial interpolation of county averages assigned to their county centroid. In comparison, the
BME framework with a county-level observation scale (Figure 2D) interpolated data in
between county averages. The county observation scale enabled estimates of aggregated
arsenic concentrations across a ~11 km radius. This map incorporated estimated distance
errors associated with the geocoded data to obtain less biased predicted arsenic values. From
this BME map we identified regions within counties where elevated arsenic is endemic. For
example, southeastern Union County and the border between Stanly and Montgomery
Counties are areas of special concern (Figure 2-D1). The BME estimates reveal that in these
areas the arsenic concentration may reach 18 μg/L. Cross-validation analysis indicated that
the BME framework better estimated arsenic concentrations than the kriging method. The
MSE for the BME method was 41% lower than that of kriging (Supporting Information
Table S4). In total, the geocoded data and the rigorous processing of location errors through
the BME method significantly improved our understanding of arsenic distributions across
unsampled areas of North Carolina.

DISCUSSION
Arsenic is a known human carcinogen and relevant environmental contaminant in drinking
water systems. Publicly available data at the NCDHHS represent a volume of historical
arsenic analyses in North Carolina domestic well waters performed under stringent EPA
guidelines that remain largely unanalyzed. A primary goal of this research was to identify
trends in areas of North Carolina with elevated arsenic concentrations in monitored domestic
well waters. We revealed arsenic trends by county in monitored wells over time as well as
estimated concentrations in unmonitored locations. The geocoding methods developed in
this study data enabled a comprehensive report of over 4,000 yearly arsenic measurements
with geographical coordinates from 1998-2007 and over 10,000 from 2008 to present, a
substantial increase relative to the USGS and EPA ambient monitoring systems.
Specifically, the number of records analyzed represents a 600-fold increase from samples
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collected by the USGS (USGS 2010) and more than three times the number of records
analyzed in other studies North Carolina wells (Pippin 2005; Kim et al. in press). The
substantial increase in recent well sampling is likely due to state legislation adopted in 2008
that requires every newly constructed well be tested. These types of monitoring programs, as
evidenced here, are successful to ensuring increased awareness of well water contaminants
and protected health of individual homeowners.

A notable result of this study is the surprisingly high levels of arsenic (up to 806 μg/L) that
were detected in some homeowners’ domestic wells. In addition, more than 1,436 (2.25%)
of wells exceeded the EPA standard. Some of the top-ranked counties identified here as
most frequently exceeding the EPA MCL have not previously been highlighted in nation- or
statewide studies (Welch et al. 1999) including Anson, Montgomery, Dare, Alexander,
Cleveland, and Currituck Counties. We identify historical trends in counties along the
Carolina terrane and through comprehensive temporal assessment reveal that arsenic levels
have been elevated for over a decade. In some of these counties, greater than 50% of the
population use domestic wells (Kenny et al. 2009). Importantly, some of the identified
counties of concern have rapidly growing populations (US Census Bureau 2006), which
compounded by an arsenic-prone geology may have public health implications for residents.
Simultaneously, rural areas are more likely to lack connection to a municipal drinking water
system. By ranking based on percentage of population at risk we identify counties where
county-level well monitoring programs may be cost-effective. By integrating information on
population size in these counties, we show Union and Stanly continue to rank among the
most at-risk county populations. Our data confirm increased concentrations of arsenic in
counties located along the Carolina terrane and highlight elevated levels over a decade-long
period. In addition, the counties of Stanly and Union have large populations (roughly 26,000
and 49,000 individuals) relying on private well water sources. Currently, no epidemiologic
literature has investigated the health impact of arsenic in these populations.

This study presents a new approach to assigning geographical coordinates when sample
locations are described by inconsistent recorded information. It was evident from the spatial
locations of GPS data that GPS device use was not uniform across the state. It was
necessary, therefore, to increase the number of geocoded locations using additional
information (Classes II-IV) to avoid bias and provide more accurate spatial representations.
As such, we applied a four-step geocoding process and error estimation scheme that
increased the available geographic coordinates of ~3,000 to more than 63,000 well analyses.
We increased the knowledgebase using available locational information to assign
geographic coordinates of domestic wells based on four spatial classes: GPS, street address,
zip code, and county. As an example, we tripled the number of successfully geocoded points
used in previous analyses over comparable geographic areas and timeframes (Pippin 2005;
Kim et al. in press). Additionally, while others have shown that multi-stage geocoding
methods improved the match rate compared to single-step methods (Lovasi et al. 2007), to
our knowledge, the present study is one of the first to use GPS locations to systematically
quantify and account for geocoding location error. We present a widely applicable method
of systematically determining acceptable match scores resulting from the multi-stage
address geocoding procedure that serves as an alternative to a minimum match score
determined a priori (Yang et al. 2004).

The general BME framework has been applied to arsenic levels in Bangladesh groundwaters
to estimate aqueous concentrations where data are not available (Serre et al. 2003). In this
study, we apply the BME framework to U.S. groundwaters and incorporate location error
into a novel arsenic estimation process, which aggregates monitored arsenic levels to a
county level observation scale (~11km). To the best of our knowledge, this is the first study
that accounts for locational error. The cross-validation analysis shows that the BME
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approach presented in this work more accurately predicts arsenic than conventional
modeling approaches. Within this framework, the county observation scale refines well-to-
well variation and we would not expect to find the high concentrations seen in individual
monitored wells (e.g. up to 806 μg/L). By narrowing the scope to counties of interest in the
southwestern Piedmont we identified southeastern Union County and the border between
Stanly and Montgomery Counties as areas of special concern. The levels documented in this
study indicate areas of arsenic contamination at nearly twice the EPA standard-a level
estimated to double the risk of bladder and lung cancer (NRC 2001). The local observation
scale enables our predictive maps to be useful for public health screening purposes by
identifying areas where the risk of arsenic exposure is high and by providing a science-based
criterion for cost-effective monitoring of wells.

Through our analyses of over 60,000 geocoded well locations we were able to more
accurately assess spatial and temporal arsenic trends in both monitored wells and estimates
at unmonitored locations across North Carolina. We found that areas near the eastern coast
and along the Carolina terrane have high prevalence of arsenic contamination in private
wells. The presence of arsenic in the Carolina terrane has been confirmed by geological
studies in this area (Foley et al. 2001) and is supported by models that incorporate geologic
determinants (Kim et al. in press). Abundant literature details the sources of groundwater
arsenic contamination through anthropogenic factors including agricultural or industrial
practices (Foley and Ayuso 2008; Jackson et al. 2006; Appleyard et al. 2004; Embrick et al.
2005), yet, much of arsenic contamination highlighted in this study is thought to be naturally
occurring due to the underlying geology (Foley et al. 2001; Welch et al. 2000; Duker et al.
2005). The Carolina terrane, however, does not underlie each of the top ten counties
(Pender, Dare, and Currituck Counties for instance) and it is possible that a combination of
anthropogenic and natural sources may contribute to arsenic contamination, however
additional studies are warranted. Currently, no EPA Superfund National Priorities List or
Toxic Release Inventory sites are listed in these three counties that would indicate
substantial anthropogenic contribution to environmental arsenic concentrations. Moreover,
while an EPA superfund site is located in Haywood County with reported historical use of
arsenical pesticides, no wells in that county that exceeded the EPA standard.

Studies like this one represent a major step towards arsenic surveillance in contaminated
areas. To lessen the risk of exposure to arsenic in drinking water, recommended preventative
measures include point-of-use removal, modification of well depth, and/or use of an
alternate water source (Alaerts and Khouri 2004; Pratson et al. 2010). These solutions are
rarely cost-effective, however, and may not be feasible in rural areas. Simple cost-effective
technologies for mitigating arsenic are not widely available, and, in lieu of federal or state
water quality regulation of domestic wells, the best mitigation is in the form of well water
testing programs. Trivalent (As3+: arsenite) and pentavalent (As5+: arsenate) arsenic most
commonly occur in natural waters (Duker et al. 2005; Feng et al. 2001). Due to the variable
toxicity of arsenic species (As3+ being more toxic), additional studies are warranted to
determine the distribution of individual arsenic species in drinking water. Targeted
monitoring is crucial in reducing the financial cost of testing for speciated arsenic in every
monitored well and the methods developed here can be applied to this end towards arsenic in
other regions as well as to other contaminants of concern to public health.

The compounding of environmental and social factors means residents could be at increased
risk for health effects from arsenic. Additional studies are warranted to further ascertain the
sources of and biogeochemical behavior of arsenic in unstudied regions of North Carolina
and to help reduce exposures among at risk populations. By identifying regions of
contamination through studies such as this one, cost-effective monitoring programs can
target at risk populations to protect public health and help to shape state and local water
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monitoring policies (Miranda et al. 2011). Moving forward we anticipate research that will
integrate these findings with biomonitoring and health outcome data to substantiate risks
posed to populations in arsenic endemic areas. The next steps to protecting individuals
include community education in at risk areas and biomonitoring of those populations most at
risk including children and pregnant women.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights: Arsenic in North Carolina June 19 2011

• Arsenic concentrations in private domestic wells were analyzed and mapped.

• 63,000 well measures were geocoded and counties ranked by wells exceeding
10 μg/L.

• Arsenic contamination in North Carolina reached levels up to 806 μg/L.

• Geostatistical methods revealed the Carolina slate belt has elevated arsenic
levels.

• Areas identified where residents would benefit from targeted monitoring.
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Figure 1.
The top thirty-five counties that exceed the EPA standard (10 μg/L). Counties are ranked by
the percent of wells that exceed the EPA standard and are represented in a heat map.
Counties with percent of wells exceeding the statewide 2.25% appear in red-scale, while
those below the statewide percent appear in blue-scale. Counties with no information
available appear in white.
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Figure 2.
Geocoded arsenic concentrations in 2009. (A) Samples exceeding the EPA standard are
shown in black. Well locations of samples below the standard appear in gray. (B) County
averages are displayed in grayscale and the number of arsenic analyses in 2009 appear
within each county. *No wells were sampled in Chowan County in 2009. (C) A classical
kriging method estimated arsenic distribution across the state at unmonitored locations. (D)
The Bayesian Maximum Entropy framework estimated arsenic distribution across the state
at unmonitored locations.
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