2,536 research outputs found

    Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades

    Full text link
    Using in-situ transmission electron microscopy, we have directly observed nano-scale defects formed in ultra-high purity tungsten by low-dose high energy self-ion irradiation at 30K. At cryogenic temperature lattice defects have reduced mobility, so these microscope observations offer a window on the initial, primary damage caused by individual collision cascade events. Electron microscope images provide direct evidence for a power-law size distribution of nano-scale defects formed in high-energy cascades, with an upper size limit independent of the incident ion energy, as predicted by Sand et al. [Eur. Phys. Lett., 103:46003, (2013)]. Furthermore, the analysis of pair distribution functions of defects observed in the micrographs shows significant intra-cascade spatial correlations consistent with strong elastic interaction between the defects

    Surface effects and statistical laws of defects in primary radiation damage : Tungsten vs. iron

    Get PDF
    We have investigated the effect of surfaces on the statistics of primary radiation damage, comparing defect production in the bcc metals iron (Fe) and tungsten (W). Through molecular dynamics simulations of collision cascades we show that vacancy as well as interstitial cluster sizes follow scaling laws in both bulk and thin foils in these materials. The slope of the vacancy cluster size distribution in Fe is clearly affected by the surface in thin foil irradiation, while in W mainly the overall frequency is affected. Furthermore, the slopes of the power law distributions in bulk Fe are markedly different from those in W. The distinct behaviour of the statistical distributions uncovers different defect production mechanisms effective in the two materials, and provides insight into the underlying reasons for the differing behaviour observed in TEM experiments of lowdose ion irradiation in these metals. Copyright (C) EPLA, 2016Peer reviewe

    Preliminary Results from the Caltech Core-Collapse Project (CCCP)

    Get PDF
    We present preliminary results from the Caltech Core-Collapse Project (CCCP), a large observational program focused on the study of core-collapse SNe. Uniform, high-quality NIR and optical photometry and multi-epoch optical spectroscopy have been obtained using the 200'' Hale and robotic 60'' telescopes at Palomar, for a sample of 50 nearby core-collapse SNe. The combination of both well-sampled optical light curves and multi-epoch spectroscopy will enable spectroscopically and photometrically based subtype definitions to be disentangled from each other. Multi-epoch spectroscopy is crucial to identify transition events that evolve among subtypes with time. The CCCP SN sample includes every core-collapse SN discovered between July 2004 and September 2005 that was visible from Palomar, found shortly (< 30 days) after explosion (based on available pre-explosion photometry), and closer than ~120 Mpc. This complete sample allows, for the first time, a study of core-collapse SNe as a population, rather than as individual events. Here, we present the full CCCP SN sample and show exemplary data collected. We analyze available data for the first ~1/3 of the sample and determine the subtypes of 13 SNe II based on both light curve shapes and spectroscopy. We discuss the relative SN II subtype fractions in the context of associating SN subtypes with specific progenitor stars.Comment: To appear in the proceedings of the meeting "The Multicoloured Landscape of Compact Objects and their Explosive Origins", Cefalu, Italy, June 2006, to be published by AIP, Eds. L. Burderi et a

    RSAT 2011: regulatory sequence analysis tools

    Get PDF
    RSAT (Regulatory Sequence Analysis Tools) comprises a wide collection of modular tools for the detection of cis-regulatory elements in genome sequences. Thirteen new programs have been added to the 30 described in the 2008 NAR Web Software Issue, including an automated sequence retrieval from EnsEMBL (retrieve-ensembl-seq), two novel motif discovery algorithms (oligo-diff and info-gibbs), a 100-times faster version of matrix-scan enabling the scanning of genome-scale sequence sets, and a series of facilities for random model generation and statistical evaluation (random-genome-fragments, random-motifs, random-sites, implant-sites, sequence-probability, permute-matrix). Our most recent work also focused on motif comparison (compare-matrices) and evaluation of motif quality (matrix-quality) by combining theoretical and empirical measures to assess the predictive capability of position-specific scoring matrices. To process large collections of peak sequences obtained from ChIP-seq or related technologies, RSAT provides a new program (peak-motifs) that combines several efficient motif discovery algorithms to predict transcription factor binding motifs, match them against motif databases and predict their binding sites. Availability (web site, stand-alone programs and SOAP/WSDL (Simple Object Access Protocol/Web Services Description Language) web services): http://rsat.ulb.ac.be/rsat/

    A Survey for H2O Megamasers III. Monitoring Water Vapor Masers in Active Galaxies

    Get PDF
    We present single-dish monitoring of the spectra of 13 extragalactic water megamasers taken over a period of 9 years and a single epoch of sensitive spectra for 7 others. Our data include the first K-band science observations taken with the new 100 m Green Bank Telescope (GBT). In the context of a circumnuclear, molecular disk model, our results suggest that either (a) the maser lines seen are systemic features subject to a much smaller acceleration than present in NGC 4258, presumably because the gas is farther from the nuclear black hole, or (b) we are detecting ``satellite'' lines for which the acceleration is in the plane of the sky. We also report a search for water vapor masers towards the nuclei of 58 highly inclined, nearby galaxies.Comment: accepted by ApJ

    Semiclassical description of multiphoton processes

    Get PDF
    We analyze strong field atomic dynamics semiclassically, based on a full time-dependent description with the Hermann-Kluk propagator. From the properties of the exact classical trajectories, in particular the accumulation of action in time, the prominent features of above threshold ionization (ATI) and higher harmonic generation (HHG) are proven to be interference phenomena. They are reproduced quantitatively in the semiclassical approximation. Moreover, the behavior of the action of the classical trajectories supports the so called strong field approximation which has been devised and postulated for strong field dynamics.Comment: 10 pages, 11 figure

    Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?

    Full text link
    A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in three cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that under these conditions the singularity of the potential does not cause any difficulties and the Coulomb interaction can be treated as any other non-singular potential. Moreover, by virtue of our three-dimensional calculation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS

    The First Month of Evolution of the Slow-Rising Type IIP SN 2013ej in M74

    Get PDF
    We present early photometric and spectroscopic observations of SN 2013ej, a bright Type IIP supernova (SN) in M74. SN 2013ej is one of the closest SNe ever discovered. The available archive images and the early discovery help to constrain the nature of its progenitor. The earliest detection of this explosion was on 2013 July 24.125 ut and our spectroscopic monitoring with the FLOYDS spectrographs began on July 27.7 ut, continuing almost daily for two weeks. Daily optical photometric monitoring was achieved with the 1 m telescopes of the Las Cumbres Observatory Global Telescope (LCOGT) network, and was complemented by UV data from Swift and near-infrared spectra from Public ESO Spectroscopic Survey of Transient Objects and Infrared Telescope Facility. The data from our monitoring campaign show that SN 2013ej experienced a 10 d rise before entering into a well-defined plateau phase. This unusually long rise time for a Type IIP has been seen previously in SN 2006bp and SN 2009bw. A relatively rare strong absorption blueward of Hα is present since our earliest spectrum. We identify this feature as Si ii, rather than high-velocity Hα as sometimes reported in the literature
    • 

    corecore