7 research outputs found

    Through the eye of a Gobi khulan – Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems

    Get PDF
    The Mongolian Gobi-Eastern Steppe Ecosystem is one of the largest remaining natural drylands and home to a unique assemblage of migratory ungulates. Connectivity and integrity of this ecosystem are at risk if increasing human activities are not carefully planned and regulated. The Gobi part supports the largest remaining population of the Asiatic wild ass (Equus hemionus; locally called “khulan”). Individual khulan roam over areas of thousands of square kilometers and the scale of their movements is among the largest described for terrestrial mammals, making them particularly difficult to monitor. Although GPS satellite telemetry makes it possible to track animals in near-real time and remote sensing provides environmental data at the landscape scale, remotely collected data also harbors the risk of missing important abiotic or biotic environmental variables or life history events. We tested the potential of animal born camera systems (“camera collars”) to improve our understanding of the drivers and limitations of khulan movements. Deployment of a camera collar on an adult khulan mare resulted in 7,881 images over a one-year period. Over half of the images showed other khulan and 1,630 images showed enough of the collared khulan to classify the behaviour of the animals seen into several main categories. These khulan images provided us with: i) new insights into important life history events and grouping dynamics, ii) allowed us to calculate time budgets for many more animals than the collared khulan alone, and iii) provided us with a training dataset for calibrating data from accelerometer and tilt sensors in the collar. The images also allowed to document khulan behaviour near infrastructure and to obtain a day-time encounter rate between a specific khulan with semi-nomadic herders and their livestock. Lastly, the images allowed us to ground truth the availability of water by: i) confirming waterpoints predicted from other analyses, ii) detecting new waterpoints, and iii) compare precipitation records for rain and snow from landscape scale climate products with those documented by the camera collar. We discuss the added value of deploying camera collars on a subset of animals in remote, highly variable ecosystems for research and conservation

    Khulan_camera_collar

    No full text
    This file contains information about the Behaviour of collared khulan, image tilt, and sensor data used for the classification tree

    Data from: Through the eye of a Gobi khulan – application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems

    No full text
    The Mongolian Gobi-Eastern Steppe Ecosystem is one of the largest remaining natural drylands and home to a unique assemblage of migratory ungulates. Connectivity and integrity of this ecosystem are at risk if increasing human activities are not carefully planned and regulated. The Gobi part supports the largest remaining population of the Asiatic wild ass (Equus hemionus; locally called “khulan”). Individual khulan roam over areas of thousands of square kilometers and the scale of their movements is among the largest described for terrestrial mammals, making them particularly difficult to monitor. Although GPS satellite telemetry makes it possible to track animals in near-real time and remote sensing provides environmental data at the landscape scale, remotely collected data also harbors the risk of missing important abiotic or biotic environmental variables or life history events. We tested the potential of animal born camera systems (“camera collars”) to improve our understanding of the drivers and limitations of khulan movements. Deployment of a camera collar on an adult khulan mare resulted in 7,881 images over a one-year period. Over half of the images showed other khulan and 1,630 images showed enough of the collared khulan to classify the behaviour of the animals seen into several main categories. These khulan images provided us with: i) new insights into important life history events and grouping dynamics, ii) allowed us to calculate time budgets for many more animals than the collared khulan alone, and iii) provided us with a training dataset for calibrating data from accelerometer and tilt sensors in the collar. The images also allowed to document khulan behaviour near infrastructure and to obtain a day-time encounter rate between a specific khulan with semi-nomadic herders and their livestock. Lastly, the images allowed us to ground truth the availability of water by: i) confirming waterpoints predicted from other analyses, ii) detecting new waterpoints, and iii) compare precipitation records for rain and snow from landscape scale climate products with those documented by the camera collar. We discuss the added value of deploying camera collars on a subset of animals in remote, highly variable ecosystems for research and conservation

    Through the eye of a Gobi khulan – Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems

    Get PDF
    The Mongolian Gobi-Eastern Steppe Ecosystem is one of the largest remaining natural drylands and home to a unique assemblage of migratory ungulates. Connectivity and integrity of this ecosystem are at risk if increasing human activities are not carefully planned and regulated. The Gobi part supports the largest remaining population of the Asiatic wild ass (Equus hemionus; locally called “khulan”). Individual khulan roam over areas of thousands of square kilometers and the scale of their movements is among the largest described for terrestrial mammals, making them particularly difficult to monitor. Although GPS satellite telemetry makes it possible to track animals in near-real time and remote sensing provides environmental data at the landscape scale, remotely collected data also harbors the risk of missing important abiotic or biotic environmental variables or life history events. We tested the potential of animal born camera systems (“camera collars”) to improve our understanding of the drivers and limitations of khulan movements. Deployment of a camera collar on an adult khulan mare resulted in 7,881 images over a one-year period. Over half of the images showed other khulan and 1,630 images showed enough of the collared khulan to classify the behaviour of the animals seen into several main categories. These khulan images provided us with: i) new insights into important life history events and grouping dynamics, ii) allowed us to calculate time budgets for many more animals than the collared khulan alone, and iii) provided us with a training dataset for calibrating data from accelerometer and tilt sensors in the collar. The images also allowed to document khulan behaviour near infrastructure and to obtain a day-time encounter rate between a specific khulan with semi-nomadic herders and their livestock. Lastly, the images allowed us to ground truth the availability of water by: i) confirming waterpoints predicted from other analyses, ii) detecting new waterpoints, and iii) compare precipitation records for rain and snow from landscape scale climate products with those documented by the camera collar. We discuss the added value of deploying camera collars on a subset of animals in remote, highly variable ecosystems for research and conservation

    Through the eye of a Gobi khulan - Application of camera collars for ecological research of far-ranging species in remote and highly variable ecosystems.

    No full text
    The Mongolian Gobi-Eastern Steppe Ecosystem is one of the largest remaining natural drylands and home to a unique assemblage of migratory ungulates. Connectivity and integrity of this ecosystem are at risk if increasing human activities are not carefully planned and regulated. The Gobi part supports the largest remaining population of the Asiatic wild ass (Equus hemionus; locally called "khulan"). Individual khulan roam over areas of thousands of square kilometers and the scale of their movements is among the largest described for terrestrial mammals, making them particularly difficult to monitor. Although GPS satellite telemetry makes it possible to track animals in near-real time and remote sensing provides environmental data at the landscape scale, remotely collected data also harbors the risk of missing important abiotic or biotic environmental variables or life history events. We tested the potential of animal born camera systems ("camera collars") to improve our understanding of the drivers and limitations of khulan movements. Deployment of a camera collar on an adult khulan mare resulted in 7,881 images over a one-year period. Over half of the images showed other khulan and 1,630 images showed enough of the collared khulan to classify the behaviour of the animals seen into several main categories. These khulan images provided us with: i) new insights into important life history events and grouping dynamics, ii) allowed us to calculate time budgets for many more animals than the collared khulan alone, and iii) provided us with a training dataset for calibrating data from accelerometer and tilt sensors in the collar. The images also allowed to document khulan behaviour near infrastructure and to obtain a day-time encounter rate between a specific khulan with semi-nomadic herders and their livestock. Lastly, the images allowed us to ground truth the availability of water by: i) confirming waterpoints predicted from other analyses, ii) detecting new waterpoints, and iii) compare precipitation records for rain and snow from landscape scale climate products with those documented by the camera collar. We discuss the added value of deploying camera collars on a subset of animals in remote, highly variable ecosystems for research and conservation

    All_activity_intervals_classified

    No full text
    This file contains: Classified sensor data for all activity readings from the camera colla

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.
    corecore