51 research outputs found

    Scalable Joint Detection and Segmentation of Surgical Instruments with Weak Supervision

    Get PDF
    Computer vision based models, such as object segmentation, detection and tracking, have the potential to assist surgeons intra-operatively and improve the quality and outcomes of minimally invasive surgery. Different work streams towards instrument detection include segmentation, bounding box localisation and classification. While segmentation models offer much more granular results, bounding box annotations are easier to annotate at scale. To leverage the granularity of segmentation approaches with the scalability of bounding box-based models, a multi-task model for joint bounding box detection and segmentation of surgical instruments is proposed. The model consists of a shared backbone and three independent heads for the tasks of classification, bounding box regression, and segmentation. Using adaptive losses together with simple yet effective weakly-supervised label inference, the proposed model use weak labels to learn to segment surgical instruments with a fraction of the dataset requiring segmentation masks. Results suggest that instrument detection and segmentation tasks share intrinsic challenges and jointly learning from both reduces the burden of annotating masks at scale. Experimental validation shows that the proposed model obtain comparable results to that of single-task state-of-the-art detector and segmentation models, while only requiring a fraction of the dataset to be annotated with masks. Specifically, the proposed model obtained 0.81 weighted average precision (wAP) and 0.73 mean intersection-over-union (IOU) in the Endovis2018 dataset with 1% annotated masks, while performing joint detection and segmentation at more than 20 frames per second

    Toward Robust Sensing for Autonomous Vehicles: An Adversarial Perspective

    Get PDF
    Autonomous Vehicles rely on accurate and robust sensor observations for safety critical decision-making in a variety of conditions. Fundamental building blocks of such systems are sensors and classifiers that process ultrasound, RADAR, GPS, LiDAR and camera signals~\cite{Khan2018}. It is of primary importance that the resulting decisions are robust to perturbations, which can take the form of different types of nuisances and data transformations, and can even be adversarial perturbations (APs). Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements, with the objective of attacking and defeating the autonomous systems. A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems in the fast-evolving domain of AVs. To this end, we survey the emerging field of sensing in adversarial settings: after reviewing adversarial attacks on sensing modalities for autonomous systems, we discuss countermeasures and present future research directions

    Exploiting vulnerabilities of deep neural networks for privacy protection

    Get PDF
    Adversarial perturbations can be added to images to protect their content from unwanted inferences. These perturbations may, however, be ineffective against classifiers that were not seen during the generation of the perturbation, or against defenses based on re-quantization, median filtering or JPEG compression. To address these limitations, we present an adversarial attack that is specifically designed to protect visual content against unseen classifiers and known defenses. We craft perturbations using an iterative process that is based on the Fast Gradient Signed Method and that randomly selects a classifier and a defense, in each iteration. This randomization prevents an undesirable overfitting to a specific classifier or defense. We validate the proposed attack in both targeted and untargeted settings on the private classes of the Places365-Standard dataset. Using ResNet18, ResNet50, AlexNet and DenseNet161 as classifiers, the performance of the proposed attack exceeds that of eleven state-of-the-art attacks

    Tracking a moving sound source from a multi-rotor drone

    Get PDF
    We propose a method to track from a multirotor drone a moving source, such as a human speaker or an emergency whistle, whose sound is mixed with the strong ego-noise generated by rotating motors and propellers. The proposed method is independent of the specific drone and does not need pre-training nor reference signals. We first employ a time-frequency spatial filter to estimate, on short audio segments, the direction of arrival of the moving source and then we track these noisy estimations with a particle filter. We quantitatively evaluate the results using a ground-truth trajectory of the sound source obtained with an on-board camera and compare the performance of the proposed method with baseline solutions

    Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World

    Get PDF
    Multi-People Tracking in an open-world setting requires a special effort in precise detection. Moreover, temporal continuity in the detection phase gains more importance when scene cluttering introduces the challenging problems of occluded targets. For the purpose, we propose a deep network architecture that jointly extracts people body parts and associates them across short temporal spans. Our model explicitly deals with occluded body parts, by hallucinating plausible solutions of not visible joints. We propose a new end-to-end architecture composed by four branches (visible heatmaps, occluded heatmaps, part affinity fields and temporal affinity fields) fed by a time linker feature extractor. To overcome the lack of surveillance data with tracking, body part and occlusion annotations we created the vastest Computer Graphics dataset for people tracking in urban scenarios by exploiting a photorealistic videogame. It is up to now the vastest dataset (about 500.000 frames, almost 10 million body poses) of human body parts for people tracking in urban scenarios. Our architecture trained on virtual data exhibits good generalization capabilities also on public real tracking benchmarks, when image resolution and sharpness are high enough, producing reliable tracklets useful for further batch data association or re-id modules

    Scene privacy protection

    Get PDF
    Images shared on social media are routinely analysed by classifiers for content annotation and user profiling. These automatic inferences reveal to the service provider sensitive information that a naive user might want to keep private. To address this problem, we present a method designed to distort the image data so as to hinder the inference of a classifier without affecting the utility for social media users. The proposed approach is based on the Fast Gradient Sign Method (FGSM) and limits the likelihood that automatic inference can expose the true class of a distorted image. Experimental results on a scene classification task show that the proposed method, private FGSM, achieves a desirable trade-off between the drop in classification accuracy and the distortion on the private classes of the Places365-Standard dataset using ResNet50. The classifier is misled 94.40% of the times in the top-5 classes with only a small average reduction of three image quality measure

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access
    corecore