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Abstract— We propose a method to track from a multi-
rotor drone a moving source, such as a human speaker or
an emergency whistle, whose sound is mixed with the strong
ego-noise generated by rotating motors and propellers. The
proposed method is independent of the specific drone and does
not need pre-training nor reference signals. We first employ
a time-frequency spatial filter to estimate, on short audio
segments, the direction of arrival of the moving source and
then we track these noisy estimations with a particle filter.
We quantitatively evaluate the results using a ground-truth
trajectory of the sound source obtained with an on-board
camera and compare the performance of the proposed method
with baseline solutions.

I. INTRODUCTION

Tracking the time-varying direction of arrival of a sound
source with microphones on a small drone is important
for human-robot interaction, surveillance, and search and
rescue applications [1]–[10]. However, most sound source
localization algorithms for robot audition operate with high
input signal-to-noise ratios (e.g. indoors) and are not directly
applicable to multi-rotor drones [11]–[13]. Robot audition
with multi-rotor drones operates under extremely low signal-
to-noise ratios (e.g. SNR < -20 dB [8]) because of the natural
and motion-induced wind, and the strong and time-varying
ego-noise generated by motors and propellers [14]–[18].

Sound source localization approaches for drones can be
supervised or unsupervised [15]. Supervised approaches
estimate the correlation matrix of the ego-noise [19]–[22]
and build a noise template database with pre-recorded
sounds to predict the ego-noise based on the drone behavior.
The behavior is monitored with additional sensors, which
limit the versatility of these approaches. Unsupervised
approaches use instead microphone signals only. Steered
response power with phase transform (SRP-PHAT) [6],
which computes a spatial likelihood map by exploiting
the correlation between microphone signals, tends to show
degraded performance with drones [23]. Approaches based
on Multiple signal classification (MUSIC) [19], [24] need
a dedicated microphone array calibration procedure [23].
To improve robustness to noise, Generalized eigenvalue
decomposition MUSIC (GEVD-MUSIC) [19] exploits as
additional information a noise correlation matrix, whose
acquisition is however still an open problem, due to the
low SNR and to the non-stationarity of the ego-noise [22].
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Time-frequency (TF) processing exploits that the energy
of the sound recording is concentrated at isolated time-
frequency bins by first estimating the direction of arrival
(DOA) of the sound at individual time-frequency bins and
then formulating a set of spatially informed filters pointing at
candidate directions [23]. The location of the sound sources
is estimated by measuring the non-Gaussianity of the spatial
filter output. However, this method requires microphones and
sound sources to remain static while the correlation matrix
of the sound source is estimated. More recently, a spatial
filter was combined with computer vision for multi-modal
sound source localization (and enhancement) [9].

To the best of our knowledge, existing methods only
consider the localization of static sources from a multi-
rotor drone. A key challenge in tracking moving sound
sources is to estimate the time-varying direction of arrival
in short temporal windows. An approach exists to track a
sound source from a moving fixed-wing drone [6], which
however produces much lower ego-noise than a multi-rotor
drone. In this paper, we propose the first method to track a
moving sound source from a multi-rotor drone. We segment
the audio streams from a microphone array into blocks
(temporal windows) and, in each block, we estimate the
location of the source with a time-frequency filter. We then
track with a particle filter these noisy estimations. Moreover,
we exploit the knowledge that the location of motors and
propellers is fixed with respect to the array to predict the
spatial characteristics of the ego-noise, and to improve the
localization performance when the source moves in front of
the drone.

II. PROBLEM DEFINITION

Let n be the time index. A target source moves in the far
field emitting sound with a time-varying DOA, θ(n), with
respect to the heading of the drone, which hovers stably while
recording the sound.

Let the superscript (·)T denote the transpose operator.
The locations of M microphones of an array are R =
[r1, . . . , rm, . . . , rM ], where rm = [rmx, rmy]T is the
position of the m-th microphone on the 2D coordinate system
of the microphone array plane. This position can be measured
manually or estimated with microphone array calibration
methods [25].

The signal from the array, x(n) = [x1(n), . . . , xM (n)]T,
contains both the target sound, s(n) = [s1(n), . . . , sM (n)]T,
and the ego-noise, v(n) = [v1(n), . . . , vM (n)]T, where
x(n) = s(n) + v(n).

Given only x(n) and R, our goal is to estimate and track
the time-varying DOA of the sound source.
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Fig. 1. Block diagram of the proposed moving sound source tracker.

III. SOUND SOURCE LOCALIZATION AND TRACKING

We extend the original batch method that assumes a static
sound source [23] to a block-wise processing scheme in order
to capture the motion of the sound source. The proposed
method consists of three main steps, namely time-frequency
spatial filtering, spatial confidence computation, and peak
detection and tracking (see Fig. 1).

A. Time-frequency spatial filtering

We first segment x(n), using a sliding window of size
W and skip size W/2, as B blocks: {x1, . . . ,xb, . . . ,xB},
where the b-th block contains W samples, i.e. xb =[
x( (b−1)W

2 + 1), · · · ,x( (b−1)W
2 +W )

]
.

We also represent the samples in the b-th block as
xb(ñ) = [xb1(ñ), . . . , xbM (ñ)]T, where ñ ∈ [1,W ] denotes
the sample index in this block. We transform xb(ñ) into
the short-time Fourier transform (STFT) domain: xb(k, l) =
[xb1(k, l), . . . , xbM (k, l)]T, where k and l denote the frequency
and frame indexes, respectively. Let K and L denote the total
number of frequency bins and time frames, respectively.

Given R, we estimate the local DOA of the sound at each
time-frequency bin and construct a time-frequency spatial
filter1, wTF(b, k, l, θ), that points at a specific direction θ.
The sound from direction θ is extracted as

ybTF(k, l, θ) = wH
TF(b, k, l, θ)x

b(k, l), (1)

where the superscript (·)H denotes the Hermitian transpose.
We then define a set of D candidate directions, θ ∈

{θ̄1, · · · , θ̄D} for source localization and formulate the
corresponding D spatially informed filters pointing at these
directions thus producing {ybTF(k, l, θ̄1), · · · , ybTF(k, l, θ̄D)}.

B. Spatial confidence

When the spatial filter is steered towards the target
sound source, the filter output tends to present high non-
Gaussianity, which we measure to build a spatial likelihood
function for the estimation of the direction of the target
sound [23]. The non-Gaussianity of a sequence can be
measured with its statistical kurtosis K(·), whose value at
each frequency bin k and direction θ, ξb(k, θ), is

ξb(k, θ) = K(ỹb
TF(k, θ)), (2)

1The details to compute the spatial filter can be found in [23].

where ỹb
TF(k, θ) denotes the time sequence |ybTF(k, :, θ)|. The

higher the kurtosis, the higher the non-Gaussianity [27].
The location of the sound source can thus be estimated
by comparing the non-Gaussianity of the D spatial filtering
outputs.

Considering the whole frequency band, we calculate a
spatial confidence function of block b as

ρ̃b(θ) =
1

K

K∑
k=1

ξb(k, θ), (3)

which we normalize as

ρb(θ) =
ρ̃b(θ)

max
θ∈{θ̄1,··· ,θ̄D}

(ρ̃b(θ))
, (4)

where max(·) denotes the maximum value of the sequence.

C. Peak detection and tracking

The spatial confidence function, ρb(θ), usually contains
multiple noisy peaks that correspond to the target source
and the ego-noise sources. Selecting the location with the
highest peak (as done in [23]) may lead to erroneous results.
We solve this problem with two steps: peak detection and
tracking.

The ego-noise mainly consists of the sound emitted from
the motors and the propellers. The motor sound can be
interpreted as point sources whose directions are static with
respect to the position of the microphones. The propeller
sound originates from the swept area of the rotating blades
and its direction spreads widely around the directions of
the motor sound. When the microphone array is placed at
the front of the body of the drone (see Fig. 2), the ego-
noise tends to arrive from the side closer to the motors
(the back of the array) thus creating a sector with lower
ego-noise (the front of the array). Fig. 3(a) shows the SRP-
PHAT functions computed at two random frames (each 2048-
sample long) [26], where four peaks, corresponding to the
four motors, can be observed. Fig. 3(b) shows the histogram
of the local DOA estimation at individual time-frequency
bins [23]. The histogram has lower values in the sector
[−45◦, 45◦]. We name this sector, where we presume that
a target sound can be more easily detected, as noiseless
sector [15].

The sound source direction is considered to be the peak
with highest confidence in the noiseless sector and it is
calculated as

θ̃b = arg max
θ∈[-45◦,45◦]

ρb(θ), (5)

where ρb(θ) is the spatial confidence function of block b.
To track θ̃b while filtering out the noisy spatial confidence
function received at each block b, we propose to use a particle
filter [28], [29]. The particles are defined as

Θb
i =

[
θ́bi , θ̇

b
i

]
, (6)

where θ́bi is the estimated sound direction and θ̇bi is the
angular velocity at block b. Each particle has an associated
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Fig. 2. The multi-rotor drone with an 8-microphone circular array and,
for tracking performance evaluation, a camera mounted at the center of the
array. (a) Front view and (b) top view. The noiseless sector is indicated with
a red shadowed area.
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Fig. 3. Localization results using ego-noise only. (a) SRP-PHAT functions
at two random frames. (b) Histogram of the DOA estimates at individual
time-frequency bins for a 30-second ego-noise segment. The noiseless sector
[-45◦, 45◦] is indicated with red lines.

weight δbi that informs how well a particle represents the
actual location of the target. A particle filter typically
consists of four steps: prediction, update, state estimation
and resampling.

The prediction step operate as

θ́bi =θ́b−1i + θ̇b−1i +N (0;σp), (7)

θ̇bi =θ̇b−1i +N (0;σṗ),

where N (0;σp) and N (0;σṗ) are the Gaussian noise on
the source direction and velocity, and σp and σṗ are their
standard deviations.

The update step calculates the weights of the particles
given the observed sound source direction (Eq. (5)) as

δbi =
1√

2πσu
e
− (θ̃b−θ́bi )

2

2σ2
u , (8)

where σu is the standard deviation that accounts for the
observation noise. Next, the state estimation step calculates
the direction of arrival of the sound as

θ̂b =

N∑
i=1

δbi θ́
b
i , (9)

where N is the number of particles. Finally, a resampling
step discards particles with very low weight and duplicates
particles with higher weight.

Fig. 4. Experimental setup. A loudspeaker is carried by a person who
walks in front of the drone that is placed on a tripod. The noiseless sector
is indicated with yellow marks on the ground.

The tracking results are estimated for each of the B blocks,
giving

[
θ̂1, · · · , θ̂b, · · · , θ̂B

]
.

IV. DATASET

We built a prototype (Fig. 2) composed of a 3DR IRIS
quadcopter, an 8-microphone circular array (diameter d =
20 cm), and a GoPro camera [8]. To avoid the self-generated
wind blowing downwards from the propellers, the array is
fixed 15 cm above the body of the drone. The microphone
signals are sampled synchronously with a multichannel audio
recorder (Zoom R24). The camera is mounted at the center
of the microphone array2.

We placed the prototype on a tripod at a height of 1.8 m
in a park to record speech as sound played by a loudspeaker
carried by a person walking in front of the drone (Fig. 4).
The drone operates with a constant hovering power, or with a
time-varying power between 50% and 150% of the hovering
status. The loudspeaker is moving inside the noiseless sector
only (indicated by the yellow marks in Fig. 4) or freely in
front of the drone. The distance between the loudspeaker and
the drone is 2 to 6 m.

We define four scenarios: S1 (the loudspeaker moves in
the constrained sector only and the drone is at constant
power); S2 (the loudspeaker moves in the constrained sector
only and the drone generates ego-noise with time-varying
power); S3 (the loudspeaker moves freely and the drone is
at constant power); and S4 (the loudspeaker moves freely
and the drone generates ego-noise with time-varying power).

We recorded a natural and a composite dataset,
each including all four scenarios (lasting 3 minutes
each). The ego-noise and speech are recorded
simultaneously in the natural dataset and separately in
the composite dataset. The recordings are available at
http://www.eecs.qmul.ac.uk/∼andrea/sst.html.

V. EXPERIMENTS

We evaluate the tracking performance by comparing the
trajectory estimated by the sound source tracker, which is
updated every half-block interval (W/2), with the ground-
truth trajectory generated from the video of the on-board

2We use the camera to obtain a ground-truth trajectory of the moving
sound source. To facilitate this task, we attach a visual marker on the source.
Since the microphones and the camera work independently, a calibration
procedure is needed to align temporally and geometrically the audio and
video signals (for details see [9]).
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Fig. 5. Source localization results by SRP and TF on the composite
sequence in S1, with W = 1 s. (a) SNR of the noisy input signal. (b)-
(d) The confidence map of the clean speech, the noisy signal processed by
SRP, and the noisy signal process by TF, respectively. (e)-(f) The confidence
function in the 86-th block (43 s) for the clean speech and the noisy signal,
respectively.

camera. We measure the tracking error, bounded at 180◦, at
the video frame rate (30 Hz), and calculate the mean and
standard deviation across the whole trajectory.

We compare particle filtering (PF) with, as baseline
methods, median filtering (MF) and no filtering (NF) on the
localization at individual blocks. MF updates the localization
at the b-th block as the median value, M(.), of the
localization results across a sequence of Wp blocks:

θ̂bMF =M
(
θ̃b−Wp+1, · · · , θ̃b

)
, (10)

where Wp is predefined constant. NF uses the localization at
the b-th block without any processing:

θ̂bNF = θ̃b. (11)

We use four block sizes, W ∈ {0.5, 1, 2, 3} s, and in each
block we use a STFT of size 1024 and 50% overlap. We set
the search area as [−180◦, 180◦] with an interval of 1◦, i.e.
D = 361. We set the noiseless sector as [−45◦, 45◦]. For the
particle filter we set N = 1000, and we use a different set
of parameters, empirically chosen, for each block size: for
W = 0.5 s, σp = 3.5◦, σu = 10◦, and Wp = 8; for W = 1 s,
σp = 5.5◦, σu = 4.5◦, and Wp = 4; for W = 2 s, σp = 7.5◦,
σu = 3.5◦, and Wp = 2; for W = 3 s, σp = 9.5◦, σu = 3◦

and Wp = 1. σṗ = 0.05 for all setups. Unless otherwise
specified, W = 2 s in the comparisons.

Fig. 5 compares the localization results obtained by the
time-frequency (TF) and the steered response power (SRP)
approaches [23], with W = 1 s, in the composite sequence
recorded in S1. Fig. 5(a) depicts the temporal variation of
the SNR, computed per processing block [30]. The SNR,
which varies significantly across the blocks, is lower than
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Fig. 6. Tracking results on the composite sequence in S1, with W = 1 s.
(a) Original peak detection result. (b) Proposed peak detection result. (c)
Trajectories generated by different trackers. (d) Tracking errors obtained by
different trackers.

-10 dB in most blocks and can be lower than -25 dB in some
blocks (e.g. between 30 s and 60 s). Fig. 5(b)-(d) shows the
confidence map computed using clean speech, SRP and TF,
respectively. In Fig. 5(b), the trajectory of the clean speech
can be observed clearly. In Fig. 5(c), the trajectory of the
ego-noise, but not that of the speech, can be observed. In
Fig. 5(d), the trajectories of both the ego-noise and the speech
can the observed. Fig. 5(e) depicts the confidence function
computed by SRP and TF, respectively, at the 86-th block
(around 43 s), where both approaches can detect the peak
location correctly. Fig. 5(f) shows the confidence function
computed by SRP and TF for the noisy signal in the same
block. In this low-SNR scenario (-24.9 dB), SRP detects two
peaks of the ego-noise only, while TF detects three peaks,
including the one from the speech.

Fig. 6 shows intermediate tracking results based on
the confidence map in Fig. 5(d). Fig. 6(a) depicts the
original peak detection results, where we retain 10 peaks per
processing block in the whole circular area [-180◦, 180◦].
The confidence map contains considerable noise but the
trajectory of the speech can still be observed. Fig. 6(b)
depicts the proposed peak detection results, where only one
peak is detected in the noiseless sector [-45◦, 45◦]. The
proposed method can remove the spurious peaks in Fig. 6(a)
effectively. Fig. 6(c) depicts the ground-truth trajectory of
the sound source, the trajectory of the clean speech, the
trajectory from detection without filtering (i.e. Fig. 6(b)),
the tracking results with MF and PF. All the three trackers
(NF, MF, and PF) can well capture the trajectory of the
moving sound source. Fig. 6(d) depicts the tracking errors:
PF has the smallest variations. The mean (standard deviation)
localization errors by NF, MF, and PF are 5.8◦(9.0◦),
5.5◦(5.5◦) and 4.5◦(4.3◦), respectively. The proposed peak
detection method can produce good localization results,



Fig. 7. Tracking results on the composite sequence in S1 with different
block sizes W ∈ {0.5, 1, 2, 3} s.

TABLE I
LOCALIZATION ERRORS ON THE COMPOSITE SEQUENCE IN S1 WITH

DIFFERENT BLOCK SIZES. EACH CELL SHOWS THE MEAN (STANDARD

DEVIATION) ERROR IN DEGREES.

W (s) No filtering Median filtering Particle filtering

0.5 10.6 (15.4) 7.1 (8.9) 6.0 (5.4)
1 5.8 (9.0) 5.5 (5.5) 4.3 (4.5)
2 4.7 (4.7) 5.8 (4.7) 4.7 (3.9)
3 6.2 (4.9) 6.2 (4.9) 6.5 (5.0)

TABLE II
LOCALIZATION ERRORS IN THE FOUR SCENARIOS OF THE COMPOSITE

(C) AND NATURAL (N) DATASET (D). EACH CELL SHOWS THE MEAN

(STANDARD DEVIATION) ERROR IN DEGREES.

D Scenario No filtering Median filtering Particle filtering

S1 3.5 (4.7) 4.6 (4.5) 3.8 (3.9)
C S2 4.3 (7.8) 4.9 (5.7) 4.4 (4.5)

S3 7.4 (9.0) 9.3 (9.0) 8.2 (7.8)
S4 8.0 (17.6) 10.9 (13.8) 8.4 (21.2)
S1 8.7 (7.5) 9.9 (7.8) 9.1 (7.4)

N S2 8.8 (8.4) 8.7 (6.5) 8.3 (6.5)
S3 14.7 (18.9) 15.4 (16.0) 10.3 (8.8)
S4 16.4 (19.5) 16.4 (16.7) 11.5 (9.3)

with large errors only in a few blocks. The tracker
further improves the localization accuracy, with PF slightly
outperforming MF.

Table I shows the localization error for each tracker with
different block sizes. For all trackers the accuracy improves
with the block size until W = 1 s, slightly changes with

Fig. 8. Tracking results for the four scenarios in the composite dataset.

Fig. 9. Tracking results for the four scenarios in the natural dataset.

W = 2 s, and then drops with W = 3 s. Fig. 7 compares
tracking results for different block sizes. The larger the block
size, the less noisy the localization results and the smoother
the trajectory. However, the larger the block size, the longer
the tracking delay, which increases the localization error (see
Fig. 7(a) and Fig. 7(d) for W = 0.5 s and 3 s, respectively).

Table II shows the localization errors on the four scenarios
in the composite and the natural datasets. Fig. 8 and
Fig. 9 depict the tracking results for these two datasets.
As expected, the trackers perform better in S1 and S2
(loudspeaker moves inside the noiseless sector) than in S3
and S4 (loudspeaker moves freely in front of the drone),
because the source localization performance degrades when
the speaker moves outside the noiseless sector. The hovering
power of the drone does not affect the tracking performance
greatly, as shown by the similar performance in S1 and S2,



and in S3 and S4. The composite dataset and natural dataset
do not show large differences in localization error.

VI. CONCLUSION

We tracked a moving sound source from a noisy
multi-rotor drone by combining time-frequency filtering,
peak detection, and particle filtering. The effectiveness
of the proposed method is exemplified with real-recorded
experiments with a drone platform and a moving sound
source. Future work will extend the algorithm to tracking
multiple sound sources in 3D with a flying drone.
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