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Abstract— We present an audio-visual dataset recorded
outdoors from a quadcopter and discuss baseline results for
multiple applications. The dataset includes a scenario for source
localization and sound enhancement with up to two static
sources, and a scenario for source localization and tracking
with a moving sound source. These sensing tasks are made
challenging by the strong and time-varying ego-noise generated
by the rotating motors and propellers. The dataset was collected
using a small circular array with 8 microphones and a camera
mounted on the quadcopter. The camera view was used to
facilitate the annotation of the sound-source positions and can
also be used for multi-modal sensing tasks. We discuss the
audio-visual calibration procedure that is needed to generate
the annotation for the dataset, which we make available to the
research community1.

I. INTRODUCTION

Audio-visual sensing from a quadcopter is of interest
for applications such as search and rescue, human-drone
interaction and multimedia broadcasting [1]–[5]. However,
the quality of sounds recorded from a quadcopter is poor
due to the strong and time-varying ego-noise generated by
the rotating motors and propellers, which cause extremely
low signal-to-noise ratios, e.g. smaller than -15 dB [6], [7].
Moreover, the movement of the quadcopter itself and natural
wind further complicate the analysis of sounds emitted by
sources in the environment.

A number of microphone-array algorithms have been
proposed to address these challenges for sound source
localization [3], [7]–[15] and enhancement to extract target
sounds masked by the strong ego-noise [1], [7], [15]–[24].
Based on the role of the onboard microphones and sensors
used, these algorithms can be categorized as unsupervised
or supervised approaches. Unsupervised approaches use
microphone signals for the acoustic sensing task with
beamforming [15], [17], [23], blind source separation [16],
[17], time-frequency spatial filtering [7], [8], [17] or post-
filtering [23]. Supervised approaches use additional sensors
to monitor the quadcopter and to predict the ego-noise in
order to assist the sound source localization process [13],
[14] or the adaptive ego-noise cancellation [1], [19].
As quadcopters are generally equipped with an onboard
camera, audio-visual processing methods can use the visual
information to facilitate the localization of the sound source
and the enhancement of the sound of target sources [9], [18].

Indoor datasets with multi-channel sound recordings
captured from a drone platform are becoming available for
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sound source localization [25] and sound enhancement [26].
DREGON was captured with an 8-channel cube-shape
microphone array mounted on a Mikrokopter drone [25].
AIRA-UAS was captured with an 8-channel circular
microphone array mounted on three types of drones, a
DJI Matrice 100, a 3DR Solo and a Parrot Bebop 2 [26].
These two datasets were collected indoors to facilitate the
annotation using external positioning systems.

In this paper we present AVQ, the first annotated outdoor
Audio-Visual dataset from a Quadcopter drone. The dataset
can be used for audio-visual and audio-only tasks such as
sound enhancement, sound source localization and tracking.
We use an 8-element microphone array mounted on a
quadcopter to record sounds in the environment as well as
a camera to allow multi-modal tasks. The dataset consists
of two subsets that capture up to two static sound sources
emitting sound in front of the drone; and a moving sound
source (see Fig. 1). We also describe the audio-visual
calibration framework that we use to align temporally and
geometrically the audio and visual signals.

The paper is organized as follows. Sec. II introduces the
hardware and the calibration process we use between audio
and video devices. Sec. III introduces the recording scenarios
and the annotation of the dataset. Sec. IV analyzes the
dataset, discusses potential applications and presents baseline
results. Finally, in Sec. V we draw conclusions.

II. AUDIO-VISUAL CALIBRATION

The sensing platform is composed of a 3DR IRIS
quadcopter, an 8-microphone circular array located 15 cm
above the body of the drone (diameter d = 20 cm, Boya
BY-M1 omnidirectional Lavelier microphones) and a GoPro
camera at the center of the microphone array. The positioning
of the microphone array aims to avoid the noise caused
by the wind blowing downwards from the propellers. The
microphone signals are sampled synchronously at the rate
of 44.1 kHz with a multichannel audio recorder (Zoom
R24). The audio is recorded into the SD card of Zoom
R24, while the video (sound and image) is recorded into the
SD card of the GoPro. Since the microphone array and the
GoPro camera work independently, a calibration procedure
is needed to align temporally and geometrically the audio
and video streams. We position the platform in a park at the
height of 1.8 m on a tripod to record the audio-visual dataset.

As the GoPro camera has its own built-in microphone,
we estimate the unknown time offset, δav , between the
streams from the microphone array and the stream from
the camera by matching the audio sequences from the
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Fig. 1. The AVQ recording setup. (a) Side and top view of the audio-
visual sensing platform; and 2D-coordinate system. OM and OC denote
the centers of the microphone array and of the camera in the 2D plane,
respectively. (b) Recording environment for Subset S1: two people talk from
nine locations. (c) Recording environment for Subset S2: a loudspeaker is
carried by a person walking in front of the drone. The left and right panels
of (b) and (c) show the overall scene and the view from the onboard camera,
respectively.

(a) (b)
Fig. 2. Image captured by the camera mounted on the drone (a) before
and (b) after image undistortion.

microphone array and from the microphone of the camera
using a calibration sound (e.g. clapping). All the audio and
video sequences provided in the AVQ dataset are already
temporally synchronized using this method.

Next, we use camera resectioning and geometrical
alignment to represent audio and visual observations in a
unified coordinate system.

A. Resectioning

The resectioning procedure aims to undistort the image
and to estimate the camera parameters for geometrical
alignment. After recording a calibration video of a
checkerboard captured at different locations, we estimate
the camera parameters with the Matlab Camera Calibration
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Fig. 3. The 3D coordinate systems for the microphone array, (X,Y, ZM ),
and the camera, (X,Y, ZC). The centers of the microphone array and
camera are OM and OC , respectively; OI = (u0, v0) is the principal
point (center) of the image; and F is the focal length of the camera. The
sound source P is projected onto the image plane as p with visual angle
θv . The audio angle from the sound source P to the array is θa.

Toolbox [30], obtaining the radial and tangential lens
distortion parameter ξ, and the intrinsic parameter K:

K =

Fu 0 0
cs Fv 0
u0 v0 1

 , (1)

where Fu and Fv represent the horizontal and vertical
components of the camera focal length, respectively, and the
camera focal length is F = Fu+Fv

2 (measured in pixels);
(u0, v0) indicate the location of the principal point (optical
center) in the image; and cs is the skew axis coefficient.

The parameter ξ is used to undistort the image frame as

Ī = D(I, ξ), (2)

where D(·) represents the undistortion procedure, I and
Ī denote an image frame before and after undistortion,
respectively [30]. An example is given in Fig. 2 illustrating
an undistorted image processed with the estimated parameter
ξ. All the video sequences provided in the AVQ dataset are
already undistorted.

The parameter K will be used in the geometric alignment
when estimating from an image the visual angle of a sound
source (visual object) with respect to the camera center.

B. Geometrical alignment

The geometrical alignment associates audio and video
events in a unified coordinate system (Fig. 3). The 3D
position P of a real-world object is projected on the image
plane, where it is denoted as p. Let θa and θv be the angles,
on a 2D horizontal plane, of the object with respect to the
microphone array and the camera. When an object emits a
sound, its direction of arrival (DOA) can be estimated either
from the microphone-array signals, θa, or from the visual
signal, θv . Since the microphone array and the video camera
have their own coordinate systems, to infer the DOA of the
sound from the corresponding object in the image we need
to know the relationship between θa and θv . In practice the
centers of the microphone array OM and the camera OC
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Fig. 4. Audio-visual calibration of the AVQ dataset. We undistort the
original image I using the lens distortion parameter ξ (Eq. 2) and detect
visual objects in the undistorted image Ī . From the location of the visual
object we compute the visual angle θv using the camera intrinsic parameter
K (Eq. 4) and convert to the audio angle θa using the calibration parameter
a (Eq. 3).

are not perfectly aligned in Fig. 3. We thus represent the
relationship between θa and θv as

θa = a1θv + a2, (3)

where a = [a1, a2]
T are unknown constants. To estimate a1

and a2, we record the sound from a speaker at L different
locations with both the microphone array and the camera
while the drone is muted. As an example, let us use the
sound from the location Q. For the audio, the DOA of the
sound, θQa , can be estimated from the microphone signal with
the SRP-PHAT algorithm [27]. For the video, we manually
label the sound emitting point (the mouth of the speaker) in
the image, pQ = (uQ, vQ), and then estimate its DOA as

θQv = arctan
uQ
F
. (4)

We thus estimate a set of DOAs of the speaker from the
audio as θa = [θ1a, . . . , θ

L
a ]

T and from the video as θv =
[θ1v, . . . , θ

L
v ]

T. The vector of parameters a is then estimated
from θa and θv using least-square fitting.

Given the parameters ξ, K and a, we can calibrate the
audio and video sequences provided in the dataset. Fig. 4
illustrates the calibration steps.

III. DATASET

The dataset consists of the S1 and S2 subsets, with
natural and composite scenarios. S1 includes up to two sound
sources at fixed locations, whereas S2 includes a moving
sound source. In the natural scenario, the target sound and
the ego-noise are recorded simultaneously. In the composite
scenario, the target sound and the ego-noise are recorded
separately, thus allowing one to evaluate the performance at
different input signal-to-noise ratios (SNRs) and to compute
the output SNR after processing [28].

In S1, two people (the sound sources) talk at nine
predefined locations in front of the drone (Fig. 1(b)).
The distance between these locations and the drone varies
between 2 m and 6 m. We record only composite scenarios,
i.e. the clean speech and the ego-noise are recorded
separately. When recording the ego-noise, the quadcopter
operates at 50%, 100% or 150% of the power level of the
hovering state. When recording speech, the two people talk in
turns for about 40 s each and then move to the next location.

In S2, a loudspeaker (the sound source) playing speech
is carried by a person (Fig. 1(c)). As the relative location
of the microphone array and the motors and propellers is

TABLE I
AVQ DATASET: SPECIFICATIONS.

Sub Seq Mod Dur VG VAD Type Drone Source

S1

seq1 A 120s EO constant
(50%) /

seq2 A 120s EO constant
(100%) /

seq3 A 40 s EO constant
(150%) /

seq4 AV 797s 3 3 SO muted 2 sources
9 locations

misc microphone location, AV calibration parameters

S2

seq1 A 210s EO constant
(100%) /

seq2 A 214s EO dynamic /
seq3 AV 215s 3 3 SO muted cons.
seq4 AV 217s 3 3 SO muted uncons.

seq5 AV 303s 3 3 MIX constant
(100%) cons.

seq6 AV 271s 3 3 MIX constant
(100%) uncons.

seq7 AV 258s 3 3 MIX dynamic cons.
seq8 AV 249s 3 3 MIX dynamic uncons.
misc microphone location, AV calibration parameters

KEY - Sub: Subset; Seq: Sequence; Mod. Modality; Dur: Duration; VG: Video
ground-truth; VAD: voice activity detection; A: Audio-only; AV: Audio-visual; EO:
ego-noise only; SO: speech only; MIX - mixture; cons: constrained area; uncons:
unconstrained area; misc: miscellaneous.

fixed, the ego-noise tends to arrive from the side closer to
the motors (back side of the array, with respect to the field
of view of the camera), thus creating a sector with lower
ego-noise (the front of the array). This allows us to identify
a noiseless sector [−45◦, 45◦] where a target sound can be
more easily detected [7]. We record natural and composite
scenarios. The drone operates either with a constant hovering
power or with a time-varying power between 50% and
150% of the hovering state. The loudspeaker moves either
in a constrained area (inside the noiseless sector) or in an
unconstrained area (in front of the drone). The distance
between the loudspeaker and the drone varies between 2 m
and 6 m. Each trajectory lasts for about 3 minutes.

Table I summarizes the specifications of the AVQ dataset.
The audio is in WAV format with sampling rate 44.1 kHz.
The video is in MP4 format with frame rate 30 fps, resolution
1920×1080 for S1 and 1280×720 for S2, and wide field
of view (i.e. 70 vertical degrees and 120 horizontal degrees
before undistortion). The total duration of the recordings is
about 50 minutes.

To obtain the ground-truth locations of the sound source,
for S1 we use a person detector [29] and for S2 we use
a visual marker to assist the loudspeaker detection (see the
example in the right panels of Fig. 1(b) and (c)). Fig. 5(a) and
(b) depict the video ground-truth locations, θv , and the voice
activity detector (VAD) information of the sound source for
S1 and S2, respectively.

IV. ANALYSIS AND RESULTS

A. Analysis

Fig. 6 depicts the time-domain, spectral, and spatial
characteristics of the ego-noise of a drone operating at a
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Fig. 5. AVQ dataset: video ground-truth trajectory of the sound sources.
Green thick lines: voice activity periods; circled numbers: sound source
locations shown in Fig. 1(b). (a) Subset S1. (b) Subset S2.

constant power and a time-varying power. In both cases, the
duration of the ego-noise sample is 30 seconds. The ego-
noise mainly consists of narrow-band harmonic noise, which
is caused by the mechanical sound of the rotating motors, and
full-band noise, which is caused by the rotating propellers
cutting the air. As can be observed from the spectrogram,
the fundamental of the harmonics typically varies with time,
corresponding to the operating power of the drone. The
spatial characteristics are illustrated by the histogram of the
local DOA estimation at individual time-frequency bins in
the 30-second duration [8]. In both Fig. 6(a) and (b), the
histogram plot presents several high peaks, which correspond
to the direction of arrival of the sound of the motors. The
histogram always presents low histogram values in the sector
[−45◦, 45◦], which we refer to as the noiseless sector. This
is because the microphone array is placed at the front of the
body of the drone (see Fig. 1(a)) and the ego-noise tends to
arrive from the back side of the array. The time-frequency
sparsity and the spatial characteristics of the ego-noise can
be exploited for acoustic sensing algorithms [7].
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Fig. 6. Time-domain waveform, time-frequency spectrogram, and spatial
analysis of the ego-noise. (a) The ego-noise of a drone operating with
constant power (at hovering power). (b) The ego-noise of a drone operating
with time-varying power (between 50% and 150% of the hovering power).
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Fig. 7. The SNR of composite sequences generated by mixing a clean
speech with the ego-noise (drone operating at hovering state). (a) S1: seq4
+ seq2. (b) S2: seq3 + seq1. (c) S2: seq4 + seq1.

Fig. 7 illustrates the input SNR of some composite
sequences generated by mixing a clean speech with the ego-
noise (when the drone is operating at hovering state). The
SNR over a segment B is defined as the power ratio between
the clean speech s(n) and the ego-noise v(n) [28]:

SNR = 10 log10

∑
n∈B s

2(n)∑
n∈B v

2(n)
. (5)

We compute the SNR on active VAD periods and over
non-overlapping segments of 2 seconds long. In Fig. 7(a),
we generate the composite data using the sequences in S1



TABLE II
AVQ DATASET: TESTING SCENARIOS.

Evaluation Scenario Modality Sequence involved
S1 S2

Sound enhancement
(up to 2 sources) composite A/AV seq1-seq4

Sound localization
(up to 2 sources) composite A/AV seq1-seq4

Source tracking composite A/AV seq1-seq4
Source tracking natural A/AV seq5-seq8

KEY - A: audio-only scenario; AV: audio-visual scenario.

and boxplot the SNR per speaker location. In all locations,
the median SNR is lower than -20 dB. In Fig. 7(b) and (c),
we generate the composite data using the sequences in S2
and plot the variation of SNR over time. Since the distance
between the speaker and the drone changes with time, the
SNR also varies dynamically.

B. Baseline results

AVQ enables the evaluation of sensing performance in
different scenarios (see Table II). S1 can be used to generate
composite scenarios to evaluate sound enhancement and
source localization at different input SNRs [28]. S2 can be
used to generate composite or natural scenarios to evaluate
the tracking performance of the moving sound source. Based
on the modality used, the dataset is appropriate for evaluating
audio-only and audio-visual joint processing algorithms.

We use AVQ to evaluate the performance of state-of-the-
art (baseline) acoustic sensing algorithms based on sparsity-
based time-frequency spatial filtering [7], [17]. Considering
that the energy of speech and the ego-noise are usually
concentrated at isolated time-frequency bins, the algorithms
compute local DOAs of the acoustic signal at individual
time-frequency bins. These local DOAs are used to construct
a spatial filter steering at the desired direction for sound
enhancement [17], or to estimate the location of a target
sound by steering the spatial filter at a set of candidate
directions [7], [8]. When the sound source is moving, the
time-frequency spatial filtering can be used to estimate the
source location in a block-wise manner and the accuracy
can be improved with a tracker [9]. When a camera is
available, the time-frequency filtering can be steered at the
target direction estimated from the video [18].

Next, we show two examples of using the AVQ dataset
for evaluating the sound enhancement, source localization
and tracking performance of the baseline algorithms.

The first example is generated with the sequences S1-
seq2 and S1-seq4 and is used to evaluate the performance
of sound source localization and sound enhancement for a
single sound source (i.e. speaker B in Fig. 5(a)) embedded
in the ego-noise, assuming that the VAD information of
the sound source is known. Fig. 8(a) presents the sound
source localization result achieved by time-frequency spatial
filtering [8], and compares it with the video ground-truth.
Fig. 8(b) presents the sound enhancement performance
achieved by two algorithms: the audio-only [7], which
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Fig. 9. Example of processing results using the data recorded at
location 7 . (a) Time-domain waveforms of speech and ego-noise. (b)
Spectrogram of the mixture signal. (c,d) Time-domain waveform and
spectrogram of the enhanced output. (e) Spectrogram of the clean speech
signal for reference. The input and output SNRs are -22 dB and 10 dB.

enhances a target direction estimated from the audio signal;
and the audio-visual algorithm [18], which enhances a target
direction estimated from the video signal. Fig. 9 shows an
example of the processed results using the data recorded at
location 7 . The input SNR is extremely low (-22 dB) and
the clean speech is masked by the strong ego-noise thus
making sound source localization and sound enhancement
very challenging. However, the baseline algorithm manages
to extract the target speech from the noisy signal, with an
output SNR of 10 dB.

The second example is generated with all the eight
sequences from S2 and is used to evaluate the tracking
performance of the moving sound source. Table III presents
the mean and standard deviation of the localization error by
comparing the video ground-truth with the results achieved
by only using a time-frequency spatial filtering (TF) and
combining TF and particle filter tracking (TFT) [9]. The
results of these time-frequency spatial filtering methods on
AVQ are available with the dataset and the ground-truth
annotation at http://cis.eecs.qmul.ac.uk/projects/avq/. More
baseline results using the AVQ dataset are also presented
in [9], [18].

http://cis.eecs.qmul.ac.uk/projects/avq/


TABLE III
BASELINE SOURCE TRACKING RESULTS USING DATASET S2, IN TERMS

OF MEAN (STANDARD DEVIATION) LOCALIZATION ERROR IN DEGREES.

Composite (S2) Natural (S2)
Sequence TF TFT Sequence TF TFT

seq1 + seq3 3.5 (4.7) 3.8 (3.9) seq5 8.7 (7.5) 9.1 (7.4)
seq2 + seq3 4.3 (7.8) 4.4 (4.5) seq6 8.8 (8.4) 8.3 (6.5)
seq1 + seq4 7.4 (9.0) 8.2 (7.8) seq7 14.7 (18.9) 10.3 (8.8)
seq2 + seq4 8.0 (17.6) 8.4 (21.2) seq8 16.4 (19.5) 11.5 (9.3)

KEY - TF: time-frequency spatial filtering; TFT: TF + tracking.

V. CONCLUSION

We presented AVQ, an audio-visual dataset recorded
outdoors with an 8-microphone circular array and a camera
mounted on a quadcopter. We also presented results of state-
of-the-art algorithms on this dataset and the audio-visual
calibration procedure that is needed to generate the ground-
truth annotation of the position of the sound sources from
the video captured by the onboard camera. We hope that
AVQ will inspire the work of researchers in the audio-visual
sensing problems in the presence of strong ego-noise.
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