47 research outputs found

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    Get PDF
    Background: Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients. Methods: From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses. Results: Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome. Conclusions: An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Bacteria use structural imperfect mimicry to hijack the host interactome

    Get PDF
    Bacteria use protein-protein interactions to infect their hosts and hijack fundamental pathways, which ensures their survival and proliferation. Hence, the infectious capacity of the pathogen is closely related to its ability to interact with host proteins. Here, we show that hubs in the host-pathogen interactome are isolated in the pathogen network by adapting the geometry of the interacting interfaces. An imperfect mimicry of the eukaryotic interfaces allows pathogen proteins to actively bind to the host's target while preventing deleterious effects on the pathogen interactome. Understanding how bacteria recognize eukaryotic proteins may pave the way for the rational design of new antibiotic molecules.Funding: Ministerio de Economía y Competitividad (MEC): Marc Torrent RYC-2012-09999; Ministerio de Economía y Competitividad (MEC): Marc Torrent SAF2015-72518-EXP; Ministerio de Economía y Competitividad (MEC): Marc Torrent SAF2017-82158-R; European Society of Clinical Microbiology and Infectious Diseases (ESCMID): Marc Torrent ESCMID-201

    A coordinated response at the transcriptome and interactome level is required to ensure uropathogenic Escherichia coli survival during bacteremia

    Get PDF
    Localized infections or disruption of the skin barrier can enable the entry of bacteria into the bloodstream, possibly leading to acute inflammation and sepsis. There is currently no holistic view on how bacteria can survive and spread in the bloodstream. In this context, we combined transposon mutagenesis, gene-expression profiling and a protein interaction network analysis to examine how uropathogenic Escherichia coli can proliferate in blood. Our results indicate that, upon migration from the urea to serum, E. coli reacts to the osmolarity difference, triggering a transcriptomic response in order to express survival genes. The proteins codified by these genes are precisely organized at the interactome level and specifically target short linear motifs located in disordered regions of host proteins. Such a coordinated response helps to explain how bacteria can adapt to and survive environmental changes within the host. Overall, our results provide a general framework for the study of bacteremia and reveal new targets for potential study as novel antimicrobials.This study was funded by the Ministerio de Economía y Competitividad (SAF2014-56568-R, SAF2015-72518-EXP and SAF2017-82158-R) and a Research Grant awarded in 2016 by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), all of which was provided to MT. MT would like to acknowledge support from the Programa Ramón y Cajal (RYC-2012-09999). NSdG acknowledges the support of the Ministerio de Economía y Competitividad, the ‘Centro de Excelencia Severo Ochoa 2013-2017’ and the CERCA Programme from the Generalitat de Catalunya

    RNA-protein interactions: central players in coordination of regulatory networks

    No full text
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration-dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post-transcriptional layer of gene regulation. We describe the structural and interaction network properties that characterize the ability of protein and RNA molecules to interact and phase separate in liquid-like compartments. Finally, we show that presence of structurally disordered regions in proteins correlate with the propensity to undergo liquid-to-solid phase transitions and cause human diseases. Also see the video abstract here https://youtu.be/kfpqibsNfS0.The research leading to these results has been supported by European Research Council (RIBOMYLOME_309545 and ASTRA_855923), the H2020 projects IASIS_727658 and INFORE_825080, the Spanish Ministry of Economy and Competitiveness BFU2017‐86970‐P, the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement No 754490 within the MINDED project.We also acknowledge support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Cataluny

    Characterization of soft amyloid cores in human prion-like proteins

    No full text
    Prion-like behaviour is attracting much attention due to the growing evidences that amyloid-like self-assembly may reach beyond neurodegeneration and be a conserved functional mechanism. The best characterized functional prions correspond to a subset of yeast proteins involved in translation or transcription. Their conformational promiscuity is encoded in Prion Forming Domains (PFDs), usually long and intrinsically disordered protein segments of low complexity. The compositional bias of these regions seems to be important for the transition between soluble and amyloid-like states. We have proposed that the presence of cryptic soft amyloid cores embedded in yeast PFDs can also be important for their assembly and demonstrated their existence and self-propagating abilities. Here, we used an orthogonal approach in the search of human domains that share yeast PFDs compositional bias and exhibit a predicted nucleating core, identifying 535 prion-like candidates. We selected seven proteins involved in transcriptional or translational regulation and associated to disease to characterize the properties of their amyloid cores. All of them self-assemble spontaneously into amyloid-like structures able to propagate their polymeric state. This provides support for the presence of short sequences able to trigger conformational conversion in prion-like human proteins, potentially regulating their functionality.This work was funded supported by the Spanish Ministry of Economy and Competitiveness [BIO2016-783-78310-R to S.V] and by ICREA [ICREA-Academia 2015 to S.V.

    Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    No full text
    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.M.T.B. would like to acknowledge support from the Programa Ramón y Cajal (RYC-2012-09999). This study has been funded by the Ministerio de Economía y Competitividad (SAF2014-56568-R) and a Research Grant 2016 by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) both to M.T.B. N.S.d.G acknowledges support of the Spanish Ministry of Economy and Competitiveness, 'Centro de Excelencia Severo Ochoa 2013-2017' and CERCA Programme from the Generalitat de Catalunya
    corecore