184 research outputs found

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    The Emergence of Consensus: a primer

    Get PDF
    The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. This paper overviews the main dimensions over which the debate has unfolded and discusses some representative results, with a focus on those situations in which consensus emerges `spontaneously' in absence of centralised institutions. Covered topics include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks, and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems

    Attentional learning helps language acquisition take shape for atypically developing children, not just children with Autism Spectrum Disorders

    Get PDF
    The shape bias-generalising labels to same shaped objects-has been linked to attentional learning or referential intent. We explore these origins in children with typical development (TD), autism spectrum disorders (ASD) and other developmental disorders (DD). In two conditions, a novel object was presented and either named or described. Children selected another from a shape, colour or texture match. TD children choose the shape match in both conditions, children with DD and 'high-verbal mental age' (VMA) children with ASD (language age > 4.6) did so in the name condition and 'low-VMA' children with ASD never showed the heuristic. Thus, the shape bias arises from attentional learning in atypically developing children and is delayed in ASD

    Sociodemographic correlates of food habits among school adolescents (12–15 year) in north Gaza Strip

    Get PDF
    Background: There is little information about meal patterns and food consumption of adolescents in Palestine. The objective of this study was to describe the association between sociodemographic factors and food intake, and meal patterns among Palestinian school adolescents (12–15 year) in North Gaza Strip. Methods: A cross-sectional study was conducted in 2002 comprising 944 subjects in 10 schools in Gaza city, Jabalia village and Jabalia refugee camp. Self-administered questionnaires were filled in by students and parents to obtain data on frequency of meals, food intake and sociodemographic characteristics. Results: High household socioeconomic status (SES) was associated with the increased number of meals and the increased intakes of many nutritious foods such as; animal food items, fruits and vegetables and dairy foods. The percentage of adolescents having breakfast daily of high and low SES was 74.5% vs 55% in boys and 65.6% vs 45% in girls. The percentage of girls with refugee status who had lunch was higher (90.2%) compared to the local citizen girls (83.9%), (p = 0.03). Girls were less likely to skip daily lunch (OR = 0.55, 95% CI = 0.36–0.87, p = 0.01) compared to boys. Risk of skipping lunch was three times higher among adolescents living in the village compared to Gaza well-off area (OR = 3.3, 95% CI = 1.72–6.31, p < 0.001). Adolescents who were having lunch daily were less likely to skip breakfast or dinner. Only 11.6% of boys and 16.2% of girls consumed fruits daily. In multivariate analysis, SES was positively associated with food frequency intake scores in both genders. Boys from the refugee camp and the village had a significant higher consumption of fruits and vegetables than boys from high and low income area in Gaza City, while it was the opposite in girls. Conclusion: Meal skipping is common, particularly among those of low SES and the intakes of many nutritious foods such as animal food items, fruits and vegetables and dairy foods seem to be low among adolescents of low SES. The results of this study could be used as an important baseline for future monitoring of the nutritional situation of adolescents.Abdallah H Abudayya, Hein Stigum, Zumin Shi, Yehia Abed and Gerd Holmboe-Ottese

    Quantification of Epithelial Cell Differentiation in Mammary Glands and Carcinomas from DMBA- and MNU-Exposed Rats

    Get PDF
    Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs) by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6) expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1) and CD49f expression, increased FAK (focal adhesion kinase) activation especially in the CD29hi population, and decreased CD61 (Integrin β3) expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer

    The E1A-Associated p400 Protein Modulates Cell Fate Decisions by the Regulation of ROS Homeostasis

    Get PDF
    The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400
    corecore