366 research outputs found
Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation.
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion
Assembly and structure of α-helical peptide films on hydrophobic fluorocarbon surfaces
The structure, orientation and formation of amphiphilic α-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The α-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide π* is likely due to the broad distribution of amide bond orientations inherent to the α-helical secondary structure. SFG spectra exhibit strong peaks near 2865 cm(−1) and 2935 cm(−1) related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 cm(−1) and 3400 cm(−1) indicate ordering of water molecules in the adsorbed--peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm(−1) confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air–buffer interface showed features related to well ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates
Isolation of Highly Suppressive CD25+FoxP3+ T Regulatory Cells from G-CSF-Mobilized Donors with Retention of Cytotoxic Anti-Viral CTLs: Application for Multi-Functional Immunotherapy Post Stem Cell Transplantation.
Previous studies have demonstrated the effective control of cytomegalovirus (CMV) infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T). Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from unrelated donors. This approach may therefore simplify the clinical application of adoptive immunotherapy and broaden the approach for manufacturing multi-functional T cells
Diminished activity-dependent BDNF signaling differentially causes autism-like behavioral deficits in male and female mice
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. Recent human genetic studies have identified multiple high-risk genes for ASD, which produce similar phenotypes, indicating that diverse genetic factors converge to common molecular pathways. We and others have hypothesized that activity-dependent neural signaling is a convergent molecular pathway dysregulated in ASD. However, the causal link between diminished activity-dependent neural signaling and ASD remains unclear. Brain-derived neurotrophic factor (BDNF) is a key molecule mediating activity-dependent neural signaling. We therefore hypothesize that diminished activity-dependent BDNF signaling could confer autism-like behavioral deficits. Here, we investigated the effect of diminished activity-dependent BDNF signaling on autism-like behavioral deficits by using mice with genetic knock-in of a human BDNF methionine (Met) allele, which has decreased activity-dependent BDNF release without altering basal BDNF level. Compared with wild-type (WT) controls, diminished activity-dependent BDNF signaling similarly induced anxiety-like behaviors in male and female mice. Notably, diminished activity-dependent BDNF signaling differentially resulted in autism-like social deficits and increased self-grooming in male and female mice, and male mice were more severe than female mice. Again, sexually dimorphic spatial memory deficits were observed in female BDNF+/Met mice, but not in male BDNF+/Met mice. Our study not only reveals a causal link between diminished activity-dependent BDNF signaling and ASD-like behavioral deficits, but also identifies previously underappreciated sex-specific effect of diminished activity-dependent BDNF signaling in ASD. These mice with genetic knock-in of the human BDNF Met variant provide a distinct mouse model for studying the cellular and molecular mechanisms underlying diminished activity-dependent neural signaling, the common molecular pathway dysregulated in ASD
Low Gene Expression of Bone Morphogenetic Protein 7 in Brainstem Astrocytes in Major Depression
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD
Characteristics of outdoor falls among older people: A qualitative study
Background Falls are a major threat to older people’s health and wellbeing. Approximately half of falls occur in outdoor environments but little is known about the circumstances in which they occur. We conducted a qualitative study to explore older people’s experiences of outdoor falls to develop understanding of how they may be prevented. Methods We conducted nine focus groups across the UK (England, Wales, and Scotland). Our sample was from urban and rural settings and different environmental landscapes. Participants were aged 65+ and had at least one outdoor fall in the past year. We analysed the data using framework and content analyses. Results Forty-four adults aged 65 – 92 took part and reported their experience of 88 outdoor falls. Outdoor falls occurred in a variety of contexts, though reports suggested the following scenarios may have been more frequent: when crossing a road, in a familiar area, when bystanders were around, and with an unreported or unknown attribution. Most frequently, falls resulted in either minor or moderate injury, feeling embarrassed at the time of the fall, and anxiety about falling again. Ten falls resulted in fracture, but no strong pattern emerged in regard to the contexts of these falls. Anxiety about falling again appeared more prevalent among those that fell in urban settings and who made more visits into their neighbourhood in a typical week. Conclusions This exploratory study has highlighted several aspects of the outdoor environment that may represent risk factors for outdoor falls and associated fear of falling. Health professionals are recommended to consider outdoor environments as well as the home setting when working to prevent falls and increase mobility among older people
TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844
Data from the newly-commissioned \textit{Transiting Exoplanet Survey
Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf
located 15 pc away. The planet has a radius of and
orbits the star every 11 hours. Although the existence of an atmosphere around
such a strongly irradiated planet is questionable, the star is bright enough
(, ) for this possibility to be investigated with transit and
occultation spectroscopy. The star's brightness and the planet's short period
will also facilitate the measurement of the planet's mass through Doppler
spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use
of the TESS Alert data, which is currently in a beta test phase, using data
from the pipelines at the TESS Science Office and at the TESS Science
Processing Operations Cente
A full Bayesian hierarchical mixture model for the variance of gene differential expression
<p>Abstract</p> <p>Background</p> <p>In many laboratory-based high throughput microarray experiments, there are very few replicates of gene expression levels. Thus, estimates of gene variances are inaccurate. Visual inspection of graphical summaries of these data usually reveals that heteroscedasticity is present, and the standard approach to address this is to take a log<sub>2 </sub>transformation. In such circumstances, it is then common to assume that gene variability is constant when an analysis of these data is undertaken. However, this is perhaps too stringent an assumption. More careful inspection reveals that the simple log<sub>2 </sub>transformation does not remove the problem of heteroscedasticity. An alternative strategy is to assume independent gene-specific variances; although again this is problematic as variance estimates based on few replications are highly unstable. More meaningful and reliable comparisons of gene expression might be achieved, for different conditions or different tissue samples, where the test statistics are based on accurate estimates of gene variability; a crucial step in the identification of differentially expressed genes.</p> <p>Results</p> <p>We propose a Bayesian mixture model, which classifies genes according to similarity in their variance. The result is that genes in the same latent class share the similar variance, estimated from a larger number of replicates than purely those per gene, i.e. the total of all replicates of all genes in the same latent class. An example dataset, consisting of 9216 genes with four replicates per condition, resulted in four latent classes based on their similarity of the variance.</p> <p>Conclusion</p> <p>The mixture variance model provides a realistic and flexible estimate for the variance of gene expression data under limited replicates. We believe that in using the latent class variances, estimated from a larger number of genes in each derived latent group, the <it>p</it>-values obtained are more robust than either using a constant gene or gene-specific variance estimate.</p
Ischemic stroke as a complication of cryptococcal meningitis and immune reconstitution inflammatory syndrome: a case report.
BACKGROUND: Cryptococcal meningitis remains the leading cause of adult meningitis in Sub-Saharan Africa. Immune Reconstitution Inflammatory Syndrome (IRIS) following anti-retroviral therapy (ART) initiation is an important complication. Here we report the first documented case of a IRIS reaction presenting as an ischemic stroke. CASE PRESENTATION: A 38 year old newly diagnosed HIV-infected, ART naive Malawian male presented to a tertiary referral hospital in Blantyre, Malawi with a 2 week history of headache. A diagnosis of cryptococcal meningitis was made and the patient was started on 1200 mg fluconazole once daily and flucytosine 25 mg/kg four times daily as part of the Advancing Cryptococcal Treatment for Africa (ACTA) clinical trial. There was an initial clinical and microbiological response to anti-fungal treatment and anti-retroviral therapy was started at week 4. The patient re-presented 16 days later with recurrence of headache, fever, and a sudden onset of left sided weakness in the context of rapid immune reconstitution; peripheral CD4 count had increased from a baseline of 29 cells/μl to 198 cells/μl. Recurrence of cryptococcal meningitis was excluded through CSF examination and fungal culture. Magnetic Resonance Imaging (MRI) of the brain demonstrated multi-focal DWI (diffusion weighted imaging) positive lesions consistent with an ischemic stroke. Given the temporal relationship to ART initiation, these MRI findings in the context of sterile CSF with raised CSF protein and a rapid immune reconstitution, following an earlier favorable response to treatment is most consistent with a paradoxical Immune Reconstitution Inflammatory Syndrome. CONCLUSIONS: Stroke is an increasing cause of morbidity and mortality amongst HIV infected persons. Ischemic stroke is a recognized complication of cryptococcal meningitis in the acute phase and is thought to be mediated by an infectious vasculitis. This is the first time an ischemic stroke has been described as part of a paradoxical IRIS reaction. This report adds to the spectrum of clinical IRIS presentations recognized and highlights to clinicians the potential complications encountered at ART initiation in severely immunocompromised patients
- …