67 research outputs found

    Multitype Λ-Coalescents

    Get PDF
    Consider a multitype coalescent process in which each block has a colour in {1, . . ., d}. Individual blocks may change colour, and some number of blocks of various colours may merge to form a new block of some colour. We show that if the law of a multitype coalescent process is invariant under permutations of blocks of the same colour, has consistent Markovian projections, and has asynchronous mergers, then it is a multitype Λ-coalescent: a process in which single blocks may change colour, two blocks of like colour may merge to form a single block of that colour, or large mergers across various colours happen at rates governed by a d-tuple of measures on [0, 1]d. We go on to identify when such processes come down from infinity. Our framework generalises Pitman’s celebrated classification theorem for singletype coalescent processes, and provides a unifying setting for numerous examples that have appeared in the literature, including the seed-bank model, the island model, and the coalescent structure of continuous-state branching processes.</p

    Fluctuation, time-correlation function and geometric Phase

    Get PDF
    We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge

    An Analytic Variational Study of the Mass Spectrum in 2+1 Dimensional SU(3) Hamiltonian Lattice Gauge Theory

    Get PDF
    We calculate the masses of the lowest lying eigenstates of improved SU(2) and SU(3) lattice gauge theory in 2+1 dimensions using an analytic variational approach. The ground state is approximated by a one plaquette trial state and mass gaps are calculated in the symmetric and antisymmetric sectors by minimising over a suitable basis of rectangular states

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, ≀25\leq 25%; these represent corrections of ∌1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=∞N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange

    36-month clinical outcomes of patients with venous thromboembolism:GARFIELD-VTE

    Get PDF
    Background: Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism (PE), is a leading cause of morbidity and mortality worldwide. Methods: GARFIELD-VTE is a prospective, non-interventional observational study of real-world treatment practices. We aimed to capture the 36-month clinical outcomes of 10,679 patients with objectively confirmed VTE enrolled between May 2014 and January 2017 from 415 sites in 28 countries. Findings: A total of 6582 (61.6 %) patients had DVT alone, 4097 (38.4 %) had PE ± DVT. At baseline, 98.1 % of patients received anticoagulation (AC) with or without other modalities of therapy. The proportion of patients on AC therapy decreased over time: 87.6 % at 3 months, 73.0 % at 6 months, 54.2 % at 12 months and 42.0 % at 36 months. At 12-months follow-up, the incidences (95 % confidence interval [CI]) of all-cause mortality, recurrent VTE and major bleeding were 6.5 (7.0–8.1), 5.4 (4.9–5.9) and 2.7 (2.4–3.0) per 100 person-years, respectively. At 36-months, these decreased to 4.4 (4.2–4.7), 3.5 (3.2–2.7) and 1.4 (1.3–1.6) per 100 person-years, respectively. Over 36-months, the rate of all-cause mortality and major bleeds were highest in patients treated with parenteral therapy (PAR) versus oral anti-coagulants (OAC) and no OAC, and the rate of recurrent VTE was highest in patients on no OAC versus those on PAR and OAC. The most frequent cause of death after 36-month follow-up was cancer (n = 565, 48.6 %), followed by cardiac (n = 94, 8.1 %), and VTE (n = 38, 3.2 %). Most recurrent VTE events were DVT alone (n = 564, 63.3 %), with the remainder PE, (n = 236, 27.3 %), or PE in combination with DVT (n = 63, 7.3 %). Interpretation: GARFIELD-VTE provides a global perspective of anticoagulation patterns and highlights the accumulation of events within the first 12 months after diagnosis. These findings may help identify treatment gaps for subsequent interventions to improve patient outcomes in this patient population.</p

    Next-generation care pathways for allergic rhinitis and asthma multimorbidity: A model for multimorbid non-communicable diseases—Meeting Report (Part 2)

    Get PDF

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
    • 

    corecore