93 research outputs found

    Transport in strongly-coupled graphene-LaAlO3/SrTiO3 hybrid systems

    Full text link
    We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO3/SrTiO3 oxide junction hosting a 4 nm-deep two-dimensional electron system. At low graphene-oxide inter-layer bias the two electron systems are electrically isolated, despite their small spatial separation, and very efficient reciprocal gating is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic depletion and tunneling across the LaAlO3 barrier. The relevance of these results in the context of strongly-coupled bilayer systems is discussed.Comment: 10 pages, 3 figure

    Itaconic-Acid-Based Sustainable Poly(ester amide) Resin for Stereolithography

    Get PDF
    Material science is recognized as a frontrunner in achieving a sustainable future, owing to its primary reliance upon petroleum-based chemical raw materials. Several efforts are made to implement common renewable feedstocks as an alternative to common fossil resources. For this purpose, additive manufacturing (AM) represents promising and effective know-how for the replacement of high energy- and resource-demanding processes with more environmentally friendly practices. This work presents a novel biobased ink for stereolithography, which has been formulated by mixing a photocurable poly(ester amide) (PEA) obtained from renewable resources with citrate and itaconate cross-linkers and appropriate photopolymerization initiators, terminators, and dyes. The mechanical features and the relative biocompatibility of 3D-printed objects have been carefully studied to evaluate the possible resin implementation in the field of the textile fashion industry

    Probing charge transfer during metal-insulator transitions in graphene-LaAlO3/SrTiO3 systems

    Get PDF
    Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather points to a localization of interfacial carriers in the oxide structure.Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather p..

    Tunnel and electrostatic coupling in graphene-LaAlO3/SrTiO3 hybrid systems

    Get PDF
    We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO3/SrTiO3 oxide junction hosting a 4 nm-deep 2-dimensional electron system. At low graphene-oxide inter-layer bias, the two electron systems are electrically isolated, despite their small spatial separation. A very efficient reciprocal gating of the two neighboring 2-dimensional systems is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic field-effects and tunneling across the LaAlO3 barrier. The relevance of these results in the context of strongly coupled bilayer systems is discussed

    Home management of children with COVID-19 in the Emilia-Romagna region, Italy

    Get PDF
    In most children, coronavirus disease 2019 (COVID-19) is a mild or moderate disease. Moreover, in a relevant number of cases, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains totally asymptomatic. All these findings seem to suggest that otherwise healthy children with suspected COVID-19 might be managed in the community in most cases, thus avoiding hospital admission and closely related medical, social and economic problems, including overwhelming hospitals. Unfortunately, home management of children with suspected COVID-19 rarely occurs, and many children with suspected or laboratory-confirmed SARS-CoV-2 infection are frequently hospitalized irrespective of the severity of disease. To evaluate the role of community health houses (CHHs) in the management of children with COVID-19, 1,009 children with suspected SARS-CoV-2 infection were studied in Emilia-Romagna Region, Italy. Among them, 194 (19.2%) resulted positive for SARS-CoV-2. The majority (583, 58%) were tested at home by CHHs, while 426 (42%) were brought to the hospital for testing. The patients who were managed in the hospital had a significantly lower median age than those who were managed at home (2 vs. 12 years, p < 0.001). Exposure to SARS-CoV-2 cases within the family was significantly more frequent among those who were managed at home (82 vs. 46%, p < 0.05). The clinical findings were similar between the children who were managed at home and those who were managed in the hospital. Only one of the children managed at home (0.7%) required hospitalization; in comparison, 26 (48%) of those whose swab samples were taken at the hospital were hospitalized. Our research shows for the first time the importance of CHHs in the management of COVID-19 in children; because of the high frequency of mild to moderate cases, management by CHHs can reduce the care load in hospitals, providing enormous advantages on the familial, medical, social, and economic levels. These findings could be useful for suggesting a territorial rather than hospital-based strategy in pediatrics in the case of a new wave of the epidemic

    Diagnosing Clostridioides difficile infections with molecular diagnostics: multicenter evaluation of revogene C. difficile assay

    Get PDF
    Clostridioides difficile infections are a significant threat to our healthcare system, and rapid and accurate diagnostics are crucial to implement the necessary infection prevention and control measurements. Nucleic acid amplification tests are such reliable diagnostic tools for the detection of toxigenic Clostridioides difficile strains directly from stool specimens. In this multicenter evaluation, we determined the performance of the revogene C. difficile assay. The analysis was conducted on prospective stool specimens collected from six different sites in Europe. The performance of the revogene C. difficile assay was compared to the different routine diagnostic methods and, for a subset of the specimens, against toxigenic culture. In total, 2621 valid stool specimens were tested, and the revogene C. difficile assay displayed a sensitivity/specificity of 97.1% [93.3-99.0] and 98.9% [98.5-99.3] for identification of Clostridioides difficile infection. Discrepancy analysis using additional methods improved this performance to 98.8% [95.8-99.9] and 99.6% [99.2-99.8], respectively. In comparison to toxigenic culture, the revogene C. difficile assay displayed a sensitivity/specificity of 93.0% [86.1-97.1] and 99.5% [98.7-99.9], respectively. These results indicate that the revogene C. difficile assay is a robust and reliable aid in the diagnosis of Clostridioides difficile infections.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was supported by grants from GenePOC, now part of Meridian Biosciences.published version, accepted versio

    Inflammatory Cytokine Expression Is Associated with Chikungunya Virus Resolution and Symptom Severity

    Get PDF
    The Chikungunya virus infection zones have now quickly spread from Africa to parts of Asia, North America and Europe. Originally thought to trigger a disease of only mild symptoms, recently Chikungunya virus caused large-scale fatalities and widespread economic loss that was linked to recent virus genetic mutation and evolution. Due to the paucity of information on Chikungunya immunological progression, we investigated the serum levels of 13 cytokines/chemokines during the acute phase of Chikungunya disease and 6- and 12-month post-infection follow-up from patients of the Italian outbreak. We found that CXCL9/MIG, CCL2/MCP-1, IL-6 and CXCL10/IP-10 were significantly raised in the acute phase compared to follow-up samples. Furthermore, IL-1β, TNF-α, Il-12, IL-10, IFN-γ and IL-5 had low initial acute phase levels that significantly increased at later time points. Analysis of symptom severity showed association with CXCL9/MIG, CXCL10/IP-10 and IgG levels. These data give insight into Chikungunya disease establishment and subsequent convalescence, which is imperative to the treatment and containment of this quickly evolving and frequently re-emerging disease

    Pathogen Proteins Eliciting Antibodies Do Not Share Epitopes with Host Proteins: A Bioinformatics Approach

    Get PDF
    The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around

    Current methods to analyze lysosome morphology, positioning, motility and function

    Get PDF
    Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.Medical Biochemistr
    • …
    corecore