361 research outputs found

    Asymmetry and structural system analysis of the proximal femur meta-epiphysis: osteoarticular anatomical pathology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human femur is commonly considered as a subsystem of the locomotor apparatus with four conspicuous levels of organization. This phenomenon is the result of the evolution of the locomotor apparatus, which encompasses both constitutional and individual variability. The work therein reported, therefore, underlies the significance of observing anatomical system analysis of the proximal femur meta-epiphysis in normal conditions, according to the anatomic positioning with respect to the right or left side of the body, and the presence of system asymmetry in the meta-epiphysis structure, thus indicating structural and functional asymmetry.</p> <p>Methods</p> <p>A total of 160 femur bones of both sexes were compiled and a morphological study of 15 linear and angulated parameters of proximal femur epiphysis was produced, thus defining the linear/angulated size of tubular bones. The parameters were divided into linear and angulated groups, while maintaining the motion of the hip joint and transmission of stress to the unwanted parts of the limb. Furthermore, the straight and vertical diameters of the femoral head and the length of the femoral neck were also studied. The angle between the neck and diaphysis, the neck antiversion and angle of rotation of the femoral neck were subsequently measured. Finally, the condylo-diaphyseal angle with respect to the axis of extremity was determined. To visualize the force of intersystem ties, we have used the method of correlation galaxy construction.</p> <p>Results</p> <p>The absolute numeral values of each linear parameter were transformed to relative values. The values of superfluity coefficient for each parameter in the right and left femoral bone groups were estimated and Pearson's correlation coefficient has been calculated (> 0.60). Retrospectively, the observed results have confirmed the presence of functional asymmetry in the proximal femur meta-epiphysis. On the basis of compliance or insignificant difference in the confidence interval of the linear parameters, we have revealed, therefore, a discrepancy in values between the neck and the diaphysis angle and the angle of femoral neck rotation (range displacement of confident interval to a greater degree to the right).</p> <p>Conclusion</p> <p>This study assessed the observations of a systemic anatomical study encompassing the proximal femur meta-epiphysis behavior in normal condition. This work has significance in medical practice as the theoretical basis is also required in knowing the decreased frequency and degree of severity of osteoarthritic pathologies in the dominant lower extremity.</p

    Design, synthesis, antitumor activity and molecular docking study of novel 5-deazaalloxazine analogs

    Get PDF
    open access articleProtein tyrosine kinases (PTKs) are the most potential therapeutic targets for cancer. Herein, we present a sound rationale for synthesis of a series of novel 2-(methylthio), 2-(substituted alkylamino), 2-(heterocyclic substituted), 2-amino, 2,4-dioxo and 2-deoxo-5-deazaalloxazine derivatives by applying structure-based drug design (SBDD) using AutoDock 4.2. Their antitumor activities against human CCRF-HSB-2, KB, MCF-7 and HeLa have been investigated in vitro. Many 5-deazaalloxazine analogs revealed high selective activities against MCF-7 tumor cell lines (IC50: 0.17–2.17 µM) over HeLa tumor cell lines (IC50 > 100 µM). Protein kinase profiling revealed that compound 3h induced multi- targets kinase inhibition including −43% against (FAK), −40% against (CDKI) and −36% against (SCR). Moreover, the Annexin-V/PI apoptotic assay elucidate that compound 3h showed 33% and potentially 140% increase in early and late apoptosis to MCF-7 cells respectively, compared to the control. The structure-activity relationship (SAR) and molecular docking study using PTK as a target enzyme for the synthesized 7-deazaalloaxazine derivatives were investigated as potential antitumor agents. The AutoDock binding affinities of the 5deazaalloxazine analogs into c-kit PTK (PDB code: 1t46) revealed reasonable correlations between their AutoDock binding free energy and IC50

    Teachers\u27 Use of YouTube in the United Arab Emirates: An Exploratory Study

    Get PDF
    Teachers around the world are using YouTube movies for different purposes. This mixed-methods study was a preliminary investigation of United Arab Emirates teachers\u27 perceptions about YouTube\u27s advantages in the classroom, current practices, and major challenges faced. Forty-five teachers completed an open-ended questionnaire. Results indicated that perceived advantages included supporting the learning process, increasing interest and efficiency, and enriching content. Moreover, findings revealed that the majority of participants were using videos for presentation purposes in teacher-led classrooms. Connectivity, technical issues, appropriateness of content, and administrative support were perceived as major challenges. © 2013 Copyright Taylor and Francis Group, LLC

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    Effect of various normalization methods on Applied Biosystems expression array system data

    Get PDF
    BACKGROUND: DNA microarray technology provides a powerful tool for characterizing gene expression on a genome scale. While the technology has been widely used in discovery-based medical and basic biological research, its direct application in clinical practice and regulatory decision-making has been questioned. A few key issues, including the reproducibility, reliability, compatibility and standardization of microarray analysis and results, must be critically addressed before any routine usage of microarrays in clinical laboratory and regulated areas can occur. In this study we investigate some of these issues for the Applied Biosystems Human Genome Survey Microarrays. RESULTS: We analyzed the gene expression profiles of two samples: brain and universal human reference (UHR), a mixture of RNAs from 10 cancer cell lines, using the Applied Biosystems Human Genome Survey Microarrays. Five technical replicates in three different sites were performed on the same total RNA samples according to manufacturer's standard protocols. Five different methods, quantile, median, scale, VSN and cyclic loess were used to normalize AB microarray data within each site. 1,000 genes spanning a wide dynamic range in gene expression levels were selected for real-time PCR validation. Using the TaqMan(® )assays data set as the reference set, the performance of the five normalization methods was evaluated focusing on the following criteria: (1) Sensitivity and reproducibility in detection of expression; (2) Fold change correlation with real-time PCR data; (3) Sensitivity and specificity in detection of differential expression; (4) Reproducibility of differentially expressed gene lists. CONCLUSION: Our results showed a high level of concordance between these normalization methods. This is true, regardless of whether signal, detection, variation, fold change measurements and reproducibility were interrogated. Furthermore, we used TaqMan(® )assays as a reference, to generate TPR and FDR plots for the various normalization methods across the assay range. Little impact is observed on the TP and FP rates in detection of differentially expressed genes. Additionally, little effect was observed by the various normalization methods on the statistical approaches analyzed which indicates a certain robustness of the analysis methods currently in use in the field, particularly when used in conjunction with the Applied Biosystems Gene Expression System

    A low-carbohydrate diet may prevent end-stage renal failure in type 2 diabetes. A case report

    Get PDF
    An obese patient with type 2 diabetes whose diet was changed from the recommended high-carbohydrate, low-fat type to a low-carbohydrate diet showed a significant reduction in bodyweight, improved glycemic control and a reversal of a six year long decline of renal function. The reversal of the renal function was likely caused by both improved glycemic control and elimination of the patient's obesity. Insulin treatment in type 2 diabetes patients usually leads to weight increase which may cause further injury to the kidney. Although other unknown metabolic mechanisms cannot be excluded, it is likely that the obesity caused by the combination of high-carbohydrate diet and insulin in this case contributed to the patient's deteriorating kidney function. In such patients, where control of bodyweight and hyperglycemia is vital, a trial with a low-carbohydrate diet may be appropriate to avoid the risk of adding obesity-associated renal failure to already failing kidneys

    The battle over Syria's reconstruction

    Get PDF
    Reconstruction is becoming the new battleground in the Syrian conflict—its continuation by other means. It is instrumentalized by the regime as a way to reconsolidate its control over the country and by rival regional and international powers to shape the internal balance of power and establish spheres of influence in the country. The paper examines the Asad regime’s practices, including co-optation of militia leaders via reconstruction concessions and use of reconstruction to clear strategic areas of opposition-dominated urban settlements. The paper then surveys how the geopolitical struggle in Syria has produced an asymmetry as regards reconstruction: those powers that lost the geo-political contest on the ground seek to use geo-economic superiority to reverse the geo-political outcome. Then the impact of proxy wars and spheres of influence in the country on the security context for reconstruction is examined. Finally, the reconstruction initiatives of the various external parties are assessed, including Russia, Iran and Turkey as well as the spoiler role by which the US seeks to obstruct reconstruction that would spell victory in Syria for its Russian and Iranian rivals.PostprintPeer reviewe

    A comprehensive functional analysis of tissue specificity of human gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues.</p> <p>Results</p> <p>We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases.</p> <p>Conclusion</p> <p>A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.</p
    corecore