766 research outputs found

    Glacier monitoring and capacity building: important ingredients for sustainable mountain development

    Get PDF
    Glacier observation data from major mountain regions of the world are key to improving our understanding of glacier changes: they deliver fundamental baseline information for climatological, hydrological, and hazard assessments. In many mountain ecosystems, as well as in the adjacent lowlands, glaciers play a crucial role in freshwater provision and regulation. This article first presents the state of the art on glacier monitoring and related strategies within the framework of the Global Terrestrial Network for Glaciers (GTN-G). Both in situ measurements of changes in glacier mass, volume, and length as well as remotely sensed data on glacier extents and changes over entire mountain ranges provide clear indications of climate change. Based on experiences from capacity-building activities undertaken in the Tropical Andes and Central Asia over the past years, we also review the state of the art on institutional capacity in these regions and make further recommendations for sustainable mountain development. The examples from Peru, Ecuador, Colombia, and Kyrgyzstan demonstrate that a sound understanding of measurement techniques and of the purpose of measurements is necessary for successful glacier monitoring. In addition, establishing durable institutions, capacity-building programs, and related funding is necessary to ensure that glacier monitoring is sustainable and maintained in the long term. Therefore, strengthening regional cooperation, collaborating with local scientists and institutions, and enhancing knowledge sharing and dialogue are envisaged within the GTN-G. Finally, glacier monitoring enhances the resilience of the populations that depend on water resources from glacierized mountains or that are affected by hazards related to glacier changes. We therefore suggest that glacier monitoring be included in the development of sustainable adaptation strategies in regions with glaciated mountains

    The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction

    Get PDF
    The mid-Piacenzian is known as a period of relative warmth when compared to the present day. A comprehensive understanding of conditions during the Piacenzian serves as both a conceptual model and a source for boundary conditions and means of verification of global climate model experiments. In this paper we present the PRISM4 reconstruction, a palaeoenvironmental reconstruction of the mid-Piacenzian (~3 Ma) containing data for palaeogeography, land and sea-ice, sea-surface temperature, vegetation, soils and lakes. Our retrodicted palaeogeography takes into account glacial isostatic adjustments and changes in dynamic topography. Soils and lakes, both significant as land surface features, are introduced to the PRISM reconstruction for the first time. Sea-surface temperature and vegetation reconstructions are unchanged but now have confidence assessments. The PRISM4 reconstruction is being used as boundary condition data for the Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2) experiments

    Commissioning and performance of the LHCb Silicon Tracker

    Full text link
    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m2 and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its final stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20μm. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector

    Search for the rare decay KS0μ+μK_S^0 \to \mu^+ \mu^-

    Full text link
    A search for the decay KS0μ+μK_S^0 \to \mu^+ \mu^- is performed, based on a data sample of 1.0 fb1^{−1} of pppp collisions at (s)=7TeV\sqrt(s)=7TeV collected by the LHCb experiment at the Large Hadron Collider. The observed number of candidates is consistent with the background-only hypothesis, yielding an upper limit of B(KS0μ+μ)<11(9)×109B(K_S^0 \to \mu^+ \mu^-) < 11(9) × 10^{−9} at 95 (90)% confidence level. This limit is a factor of thirty below the previous measurement

    Lie Bodies: A Manifold Representation of 3D Human Shape

    Full text link
    Abstract. Three-dimensional object shape is commonly represented in terms of deformations of a triangular mesh from an exemplar shape. Ex-isting models, however, are based on a Euclidean representation of shape deformations. In contrast, we argue that shape has a manifold structure: For example, summing the shape deformations for two people does not necessarily yield a deformation corresponding to a valid human shape, nor does the Euclidean difference of these two deformations provide a meaningful measure of shape dissimilarity. Consequently, we define a novel manifold for shape representation, with emphasis on body shapes, using a new Lie group of deformations. This has several advantages. First we define triangle deformations exactly, removing non-physical deforma-tions and redundant degrees of freedom common to previous methods. Second, the Riemannian structure of Lie Bodies enables a more mean-ingful definition of body shape similarity by measuring distance between bodies on the manifold of body shape deformations. Third, the group structure allows the valid composition of deformations. This is important for models that factor body shape deformations into multiple causes or represent shape as a linear combination of basis shapes. Finally, body shape variation is modeled using statistics on manifolds. Instead of mod-eling Euclidean shape variation with Principal Component Analysis we capture shape variation on the manifold using Principal Geodesic Analy-sis. Our experiments show consistent visual and quantitative advantages of Lie Bodies over traditional Euclidean models of shape deformation and our representation can be easily incorporated into existing methods

    Sea Surface Temperature of the mid-Piacenzian Ocean:A Data-Model Comparison

    Get PDF
    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic
    corecore