35 research outputs found

    Health implications of fructose consumption: A review of recent data

    Get PDF
    This paper reviews evidence in the context of current research linking dietary fructose to health risk markers

    Dietary glycemic index and load and the risk of type 2 diabetes: A systematic review and updated meta‐analyses of prospective cohort studies

    Get PDF
    Published meta-analyses indicate significant but inconsistent incident type-2 diabetes (T2D)-dietary glycemic index (GI) and glycemic load (GL) risk ratios or risk relations (RR). It is now over a decade ago that a published meta-analysis used a predefined standard to identify valid studies. Considering valid studies only, and using random effects dose-response meta-analysis (DRM) while withdrawing spurious results (p < 0.05), we ascertained whether these relations would support nutrition guidance, specifically for an RR > 1.20 with a lower 95% confidence limit >1.10 across typical intakes (approximately 10th to 90th percentiles of population intakes). The combined T2D-GI RR was 1.27 (1.15-1.40) (p < 0.001, n = 10 studies) per 10 units GI, while that for the T2D-GL RR was 1.26 (1.15-1.37) (p < 0.001, n = 15) per 80 g/d GL in a 2000 kcal (8400 kJ) diet. The corresponding global DRM using restricted cubic splines were 1.87 (1.56-2.25) (p < 0.001, n = 10) and 1.89 (1.66-2.16) (p < 0.001, n = 15) from 47.6 to 76.1 units GI and 73 to 257 g/d GL in a 2000 kcal diet, respectively. In conclusion, among adults initially in good health, diets higher in GI or GL were robustly associated with incident T2D. Together with mechanistic and other data, this supports that consideration should be given to these dietary risk factors in nutrition advice. Concerning the public health relevance at the global level, our evidence indicates that GI and GL are substantial food markers predicting the development of T2D worldwide, for persons of European ancestry and of East Asian ancestry

    Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology

    Get PDF
    Objective: Individuals with obesity and type 2 diabetes differ from lean and healthy individuals in their abundance of certain gut microbial species and microbial gene richness. Abundance of Akkermansia muciniphila, a mucin-degrading bacterium, has been inversely associated with bodyfat mass and glucose intolerance in mice, but more evidence is needed in humans. The impact of diet and weight loss on this bacterial species is unknown. Our objective was to evaluate the association between fecal A. muciniphila abundance, fecal microbiome gene richness, diet, host characteristics, and their changes after calorie restriction (CR). Design: The intervention consisted of a 6-week CR period followed by a 6-week weight stabilization (WS) diet in overweight and obese adults (N=49, including 41 women). Fecal A. muciniphila abundance, fecal microbial gene richness, diet and bioclinical parameters were measured at baseline and after CR and WS. Results: At baseline A. muciniphila was inversely related to fasting glucose, waist-to-hip ratio, and subcutaneous adipocyte diameter. Subjects with higher gene richness and A. muciniphila abundance exhibited the healthiest metabolic status, particularly in fasting plasma glucose, plasma triglycerides and body fat distribution. Individuals with higher baseline A. muciniphila displayed greater improvement in insulin sensitivity markers and other clinical parameters after CR. A. muciniphila was associated with microbial species known to be related to health. Conclusion: A. muciniphila is associated with a healthier metabolic status and better clinicaloutcomes after CR in overweight/obese adults, however the interaction between gut microbiota ecology and A. muciniphila has to be taken into account

    Four-Week Low-Glycemic index Breakfast With a Modest Amount of Soluble Fibers

    No full text
    Low-glycemic index diets are associated with a wide range of benefits when followed on a chronic basis. The chronic effects, however, of the substitution of 1 meal per day are not well known in diabetic subjects. Therefore, we aimed to evaluate whether the chronic use of a low-glycemic index breakfast (low-GIB) rich in low-GI carbohydrates and a modest amount of soluble fibers could have an effect on lipemia at a subsequent lunch, and improve glucose and lipid metabolism in men with type 2 diabetes. A total of 13 men with type 2 diabetes were randomly allocated in a double-blind cross-over design to a 4-week daily intake of a low-GI versus a high-GI breakfast separated by a 15-day washout interval. The low-GI breakfast was composed of whole grain bread and muesli containing 3 g ␤-glucan from oats. Low-GIB induced lower postprandial plasma glucose peaks than the high-GIB at the beginning (baseline, P < .001) and after the 4-week intake (P < .001). The incremental area under the plasma glucose curve was also lower (P < .001, P < .01, baseline, and 4 weeks, respectively). There was no effect on fasting plasma glucose, insulin, fructosamine, or glycosylated hemoglobin (HbA 1c ). Fasting plasma cholesterol, as well as the incremental area under the cholesterol curve, were lower (P < .03, P < .02) after the 4-week low-GIB period than after the high-GIB period. Apolipoprotein B (apo B) was also decreased by the 4-week low-GIB. There was no effect of the low-GI breakfast on triacylglycerol excursions or glucose and insulin responses at the second meal. The high-GIB, however, tended to decrease the amount of mRNA of leptin in abdominal adipose tissue, but had no effect on peroxisome proliferatoractivated receptor ␥ (PPAR␥) and cholesterylester transfer protein (CETP) mRNA amounts. In conclusion, the intake of a low-GI breakfast containing a modest amount (3 g) of ␤-glucan for 4 weeks allowed good glycemic control and induced low plasma cholesterol levels in men with type 2 diabetes. The decrease in plasma cholesterol associated with low-GI breakfast intake may reduce the risk of developing cardiovascular complications in subjects with type 2 diabetes. Copyright 2002, Elsevier Science (USA). All rights reserved. C ONCERNS ABOUT USING high-carbohydrate diets in diabetes 1 because of adverse effects on triglycerides and high-density lipoprotein-cholesterol levels, 2 are overcome by recommending carbohydrates that give low postprandial plasma glucose responses. 3,4 For over half a century, it has been postulated that the increase in blood glucose was less pronounced after the consumption of starchy foods than after the consumption of foods containing simple carbohydrates. Starchy foods have been recognized as the main candidate for reducing glycemic and insulinemic responses. However, coincidental with recommendations to increase the intake of starchy foods has been the recognition that the glycemic responses to all starches are not the same and that starches are not interchangeable. Although the use of low-GI carbohydrates in the diet of patients with type 2 diabetes is still debated, The acute effects of low-or high-GI breakfasts have been evaluated in normal healthy subjects. Few studies have evaluated the chronic effect of these breakfasts in type 2 diabetic subjects. 21,22 In this perspective, therefore, we aimed to evaluate the effects of a low-GI breakfast on both glucose and lipid metabolism in men with type 2 diabetes. We aimed also to evaluate the effects of a low-GI breakfast on hyperlipidemia at a subsequent lunch. Furthermore, we determined the expression of some lipid-related enzymes: cholesterylester transfer protein (CETP), leptin, and peroxisome proliferator-activated receptor ␥ (PPAR␥), because in a previous study from our laboratory, a similar diet for rats was found to decrease the satietogenic factor, leptin, as well as some lipid-related enzymes. 2

    A Dietary Supplement Containing Cinnamon, Chromium and Carnosine Decreases Fasting Plasma Glucose and Increases Lean Mass in Overweight or Obese Pre-Diabetic Subjects: A Randomized, Placebo-Controlled Trial

    No full text
    International audienceBackgroundPreventing or slowing the progression of prediabetes to diabetes is a major therapeutic issue.ObjectivesOur aim was to evaluate the effects of 4-month treatment with a dietary supplement containing cinnamon, chromium and carnosine in moderately obese or overweight pre-diabetic subjects, the primary outcome being change in fasting plasma glucose (FPG) level. Other parameters of plasma glucose homeostasis, lipid profile, adiposity and inflammatory markers were also assessed.MethodsIn a randomized, double-blind, placebo-controlled study, 62 subjects with a FPG level ranging from 5.55 to 7 mmol/L and a body mass index ≥25 kg/m2, unwilling to change their dietary and physical activity habits, were allocated to receive a 4-month treatment with either 1.2 g/day of the dietary supplement or placebo. Patients were followed up until 6 months post-randomization.ResultsFour-month treatment with the dietary supplement decreased FPG compared to placebo (-0.24±0.50 vs +0.12±0.59 mmol/L, respectively, p = 0.02), without detectable significant changes in HbA1c. Insulin sensitivity markers, plasma insulin, plasma lipids and inflammatory markers did not differ between the treatment groups. Although there were no significant differences in changes in body weight and energy or macronutrient intakes between the two groups, fat-free mass (%) increased with the dietary supplement compared to placebo (p = 0.02). Subjects with a higher FPG level and a milder inflammatory state at baseline benefited most from the dietary supplement.ConclusionsFour-month treatment with a dietary supplement containing cinnamon, chromium and carnosine decreased FPG and increased fat-free mass in overweight or obese pre-diabetic subjects. These beneficial effects might open up new avenues in the prevention of diabetes
    corecore