171 research outputs found

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    Reversible Band Gap Engineering in Carbon Nanotubes by Radial Deformation

    Full text link
    We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band-lineup is determined from first-principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.Comment: To be appear in Phys. Rev. B, Apr 15, 200

    The European Photon Imaging Camera on XMM-Newton: The MOS Cameras

    Get PDF
    The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30 arcmin diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full closed loop thermal control. A radio-active source is fitted for internal calibration. Data are processed on-board to save telemetry by removing cosmic ray tracks, and generating X-ray event files; a variety of different instrument modes are available to increase the dynamic range of the instrument and to enable fast timing. The instruments were calibrated using laboratory X-ray beams, and synchrotron generated monochromatic X-ray beams before launch; in-orbit calibration makes use of a variety of celestial X-ray targets. The current calibration is better than 10% over the entire energy range of 0.2 to 10 keV. All three instruments survived launch and are performing nominally in orbit. In particular full field-of-view coverage is available, all electronic modes work, and the energy resolution is close to pre-launch values. Radiation damage is well within pre-launch predictions and does not yet impact on the energy resolution. The scientific results from EPIC amply fulfil pre-launch expectations.Comment: 9 pages, 11 figures, accepted for publication in the A&A Special Issue on XMM-Newto

    Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol–gel materials

    Get PDF
    The tensile shear strength of a composite epoxy/sol–gel system modified with different ratios of multiwall carbon nanotubes (MWCNTs) was evaluated using a mechanical testing machine. The experimental results showed that the shear strength increased when lower than ~0.07 wt% of MWCNTs were added in the composite solution. The increase of the shear strength was attributed to both the mechanical load transfer from the matrix to the MWCNTs and the high specific surface area of this material that increased the degree of crosslinking with other inorganic fillers in the formulation. However, a decrease in the adhesive shear strength was observed after more than ~0.07 wt% MWCNTs were added to the composite. The reason for this may be related to the high concentration of MWCNTs within the matrix leading to excessively high viscosity, dewetting of the substrate surfaces, and reduced bonding of MWCNTs with the matrix, thereby limiting the strength. SEM observation of the fracture surfaces for composite epoxy/sol–gel adhesive materials with 0.01 wt% MWCNTs showed a mixed interfacial/cohesive fracture mode. This fracture mode indicated strong links at the adhesive/substrate interface, and interaction between CNTs and the matrix was achieved; therefore, adhesion performance of the composite epoxy/sol–gel material to the substrate was improved. An increase of a strong peak related to the C–O bond at ~1733 cm-1 in the FTIR spectra was observed. This peak represented crosslinking between the CNT surface and the organosilica nanoparticles in the MWCNTs-doped composite adhesive. Raman spectroscopy was also used to identify MWCNTs within the adhesive material. The Raman spectra exhibit peaks at ~1275 cm-1 and in the range of ~1549–1590 cm-1. The former is the graphite G-band, while the latter is the diamond D-band. The D-band and G-band represent the C–C single bond and C=C double bond in carbon nanotubes, respectively

    Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study

    Get PDF
    The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains

    Vibrational properties of single-wall nanotubes and monolayers of hexagonal BN

    Get PDF
    We report a detailed study of the vibrational properties of BN single-walled nanotubes and of the BN monolayer. Our results have been obtained from a well-established Tight-Binding model complemented with an electrostatic model to account for the long-range interactions arising from the polar nature of the material, and which are not included in the Tight-Binding model. Our study provides a wealth of data for the BN monolayer and nanotubes, such as phonon band structure, vibrational density of states, elastic constants, etc. For the nanotubes we obtain the behavior of the optically active modes as a function of the structural parameters, and we compare their frequencies with those derived from a zone-folding treatment applied to the phonon frequencies of the BN monolayer, finding general good agreement between the two.Comment: 14 pages with 10 postscript figures, to appear in PRB, January 15th 200

    Hybrid effects in graphene oxide/carbon nanotube-supported Layered Double Hydroxides: Enhancing the CO₂ sorption properties

    Get PDF
    Graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT) have been previously used independently as active supports for Layered Double Hydroxides (LDH), and found to enhance the intrinsic CO₂ sorption capacity of the adsorbents. However, the long-term stability of the materials subjected to temperature-swing adsorption (TSA) cycles still requires improvement. In this contribution, GO and MWCNT are hybridized to produce mixed substrates with improved surface area and compatibility for the deposition of LDH platelets, compared to either phase alone. The incorporation of a robust and thoroughly hybridized carbon network considerably enhances the thermal stability of activated, promoted LDH over twenty cycles of gas adsorption-desorption (96% of retention of the initial sorption capacity at the 20th cycle), dramatically reducing the sintering previously observed when either GO or MWCNT were added separately. Detailed characterization of the morphology of the supported LDH, at several stages of the multicycle adsorption process, shows that the initial morphology of the adsorbents is more strongly retained when supported on the robust hybrid GO/MWCNT network; the CO₂ adsorption performance correlates closely with the specific surface area of the adsorbents, with both maximized at small loadings of a 1:1 ratio of GO:MWCNT substrate
    corecore