381 research outputs found

    Noms vernaculaires et usages traditionnels de quelques coquillages des Marquises

    Get PDF
    Lavondès Henri, Richard Georges, Salvat Bernard. Noms vernaculaires et usages traditionnels de quelques coquillages des Marquises. In: Journal de la Société des océanistes, n°39, tome 29, 1973. pp. 121-137

    Ultracold Neutron Production in a Pulsed Neutron Beam Line

    Full text link
    We present the results of an Ultracold neutron (UCN) production experiment in a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal expected can be overwhelmed by the large background associated with the scattering of the primary cold neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-D2_2 is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O2_2. In addition to setting the overall detection efficiency in the apparatus, UCN production data using solid D2_2 suggest that the UCN upscattering cross-section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross-sections in the thermal and cold regimes

    Monte Carlo Simulation of Electron Backscattering in Solids Using a General-Purpose Computer Code

    Get PDF
    A Monte Carlo study of backscattering of kilovolt electrons in solids, a process of primary importance in electron microscopy and surface analytical techniques, is carried out. Simulations have been performed using the general-purpose simulation code PENELOPE (an acronym for Penetration and ENErgy LOss of Positrons and Electrons ), which generates electron-photon showers in arbitrary materials. A systematic comparison of results from PENELOPE with available experimental data, and with results from simulations with a much more sophisticated code, is given for electron beams with energies between 2.5 and 60 keV and elemental solids with atomic numbers Z = 4 to 92. It is concluded that PENELOPE gives a reliable description of the backscattering process, even for relatively low electron energies and thin targets

    Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    Full text link
    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.Comment: 6 pages, 8 figures, Proceedings Nuclear Physics in Astrophysics II, May 16-20, 2005, Debrecen, Hungary. The original publication is available at www.eurphysj.or

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl

    Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    Full text link
    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in radiotherapy energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update

    In vitro antifungal activity of Peltophorum dubium (Spreg.) Taub. extracts against Aspergillus flavus.

    Get PDF
    Aspergillus flavus is a filamentous, saprophytic fungus, whose colonization occurs mainly in cereal grains and oilseeds once arvested. Under certain conditions, it could produce mycotoxins called aflatoxins, known as powerful human liver carcinogens. The aim of the present study was to describe the antifungal activity of extracts of Peltophorum dubium, a species from northern Argentina (Oriental Chaco), against A. flavus. The antifungal activities of di erent collection sites are reported. The extracts exhibited a minimum inhibitory concentration of 125 g/mL, and the di erences between the treatments and the inoculum control were 11 mm of P. dubium A and 10 mm of P. dubium F in colony growth. Moreover, hyphae treated with the extracts stained blue with Evans blue showed alterations in the membrane and/or cell wall, allowing the dye income. Bio-guided fractionation, High Performance Liquid Chromatography diode array ultraviolet/visible (HPLC UV/VIS DAD), and Ultra-High Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry (UPLC ESI-MS) analyses were conducted to characterize the extracts and their active fractions. The HPLC UV/VIS DAD analysis allowed the determination of the presence of flavonoids (flavonols and flavones), coumarins, terpenes, and steroids. UPLC ESI/MS analysis of active fractions revealed the presence of Kaempferol, Apigenin, Naringenin, Chrysin and aidzein.Fil: Di Ciaccio, Lucí­a Soledad. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Catalano, Alejandra V. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Cátedra de Farmacognosia; ArgentinaFil: López, Paula G. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Cátedra de Farmacognosia; ArgentinaFil: Rojas, Dante. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Tecnología de Alimentos; ArgentinaFil: Fortunato, Renee Hersilia. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Salvat, Adriana Elisabeth. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Cristos, Diego Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Tecnología de Alimentos; Argentin

    The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloy

    Get PDF
    Nickel-based superalloy IN713C produced through investment casting route is widely used for turbocharger turbine wheels in the automotive industry. The produced microstructure and microtexture are not homogeneous across the turbine component due to geometrical factors and localised cooling rate during the casting process, which give rise to inhomogeneous deformation during service. In the present paper, two kinds of in-house fatigue tests, Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF), were conducted at 600 °C in attempt to simulate the actual fatigue conditions experienced by turbine wheels in turbocharger. From Geometrically Necessary Dislocation (GND) distributions and strain analyses, it is concluded that microstructure heterogeneity such as carbide precipitates distribution within dendritic structure network determine the failure micromechanics during LCF tests. In the early stage of LCF loading, crack principally initiated within near surface carbides that have been oxidised during high temperature exposure. The higher GND density at the tip of carbide precipitates due to oxidation volume expansion are found to facilitate easy cracks initiation and propagation. Moreover, the cluster-like carbides network and its distribution can accelerate oxidation process and crack growth effectively. Furthermore, in the later stage of crack propagation during LCF, the weak interdendrite areas rotate to accommodate increased strain leading to faster cracks propagation and hence final catastrophic failure. Serial section technique for 3-D visualisation was employed to investigate the crystallographic grain orientation correlation with fracture mechanics during HCF loading. It appears that the microtexure and grain orientations are more critical than the alloy microstructure in an area with a relatively uniform carbides distribution and weak dendrite structure where HCF failure occurred. Based on the slip trace analysis, it was found that most faceting occurred in Goss grains (//LD) and on slip system with the highest Schmid factor. It is concluded that cracks were initiated on planes with high Schmid factors and assisted by the presence of porosity
    • …
    corecore