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Abstract 

A Monte Carlo study of backscattering of kilovolt 
electrons in solids, a process of primary importance in 
electron microscopy and surface analytical techniques, is 
carried out. Simulations have been performed using the 
general-purpose simulation code PENELOPE (an acro­
nym for "Penetration and ENErgy LOss of Positrons 
and Electrons") , which generates electron-photon show­
ers in arbitrary materials. A systematic comparison of 
results from PENELOPE with available experimental 
data, and with results from simulations with a much 
more sophisticated code, is given for electron beams 
with energies between 2.5 and 60 keV and elemental 
solids with atomic numbers Z = 4 to 92. It is con­
cluded that PENELOPE gives a reliable description of 
the backscattering process , even for relatively low 
electron energie s and thin targets. 
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Introduction 

Electrons impinging on the surface of a solid target 
undergo a succession of scattering processes within the 
solid and as a result, a fraction of them return to the 
surface and escape from the target. A reliable descrip­
tion of the number and the angle-energy distribution of 
these backscattered electrons is required for quantization 
in scanning electron microscopy (SEM), electron probe 
microanalysis (EPMA) , Auger electron spectroscopy 
(AES), etc. Simple theories have been formulated to 
describe electron backscattering on the basis of either a 
single-scattering model (Everhart, 1960), approximate 
diffusion models (Archard , 1961; Thiimmel , 1974) or 
combinations of both (Niedrig , 1981). These simple 
theories can only reproduce the gross features of back­
scattering . A more realistic description can be obtained 
by numerically solving the Boltzmann transport equation 
(Fathers and Rez, 1979). However , the solution of this 
integro-differential equation poses considerable difficul­
ties and is feasible only for relatively simple interaction 
models . Monte Carlo simulation methods (Kalos and 
Whitlock , 1986) are well suited for studying radiation 
transport processes, and have been widely used in the 
past to study electron backscattering in solids (Shimizu 
and Murata , 1971; Reimer and Krefting , 1976; Lilje­
quist, 1983a; Martfnez et al. , 1990). The practical ad­
vantage of Monte Carlo methods is that they can imple­
ment realistic interaction models and can be applied to 
arbitrary geometries (e.g., multilayer samples, tilted 
specimens, converging beams, etc.). 

A Monte Carlo method is defined by the adopted 
scattering model (i.e., the set of cross sections for the 
different interaction mechanisms) and simulation algo­
rithm (the set of rules used to generate random electron 
tracks from a given scattering model) . For kV elec­
trons, "detailed" algorithms, which simulate all interac­
tions along a track in chronological succession, are ap­
plicable. Detailed simulation is nominally exact, i.e., it 
yields results that, apart from the inherent statistical un­
certainties, agree with those that would be obtained from 
the solution of the Boltzmann transport equation with the 
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same scattering model. Since the number of collisions 
experienced by an electron until it comes to rest in­
creases with its initial energy, detailed algorithms are 
very inefficient for electrons with high initial energies. 
The majority of high-energy simulation codes (Jenkins 
et al., 1988) implement "condensed" algorithms (Berger, 
1963), which generate the global effect of the interac­
tions along a track segment of a given length in a single 
computational step with the aid of multiple scattering 
theories. These theories introduce approximations that 
may affect the simulation results (Bielajew and Rogers, 
1987). A more satisfactory approach is provided by the 
so-called "mixed" simulation algorithms (Femandez­
Varea et al., 1993) that combine ( exact) detailed simula­
tion of hard interactions (i.e . , interactions with scattering 
angle or energy loss greater than given cutoff values) 
with condensed simulation of soft interactions. If the 
angle and energy cutoffs are properly selected, mixed 
simulation is as accurate as detailed simulation and may 
represent a considerable economy in computer time, 
even for relatively low energies. Nevertheless, mixed 
simulation of both elastic and inelastic scattering has 
only been occasionally used for kV electrons (e.g., by 
Reimer and Krefting, 1976). 

The first simulations of kilovolt electron transport 
were based on very simple scattering models . Thus, in 
the early eighties, it was a common practice to use the 
screened Rutherford cross section to describe elastic col­
lisions and to rely on the continuous slowing down ap­
proximation to simulate energy losses . Since then, most 
of the simulation work in the kV energy range has been 
concentrated in demonstrating the reliability of scattering 
models of increasing complexity using detailed simula­
tion algorithms. In spite of the success of these Monte 
Carlo methods, systematic studies of electron backscat­
tering covering a wide spectrum of materials , energies 
and directions of incidence are scarce. The main reason 
for the lack of systematic simulation studies is that to 
obtain accurate cross sections one must perform quite 
elaborate calculations , specific of each material. More­
over, these cross sections are usually obtained in numer­
ical form and this considerably complicates the simula­
tion code, which must work on the basis of interpolation 
in extensive data tables . 

In this paper, the general-purpose simulation 
package PENELOPE (an acronym for "Penetration and 
ENErgy LOss of Positrons and Electrons", Baro et al., 
1995) is applied to the study of electron backscattering 
in solids. PENELOPE implements a mixed simulation 
algorithm that was initially developed to generate elec­
tron-photon showers in arbitrary material systems for a 
wide energy range, from ~ 1 GeV down to ~ 100 eV. 
Condensed Monte Carlo codes , e.g. , EGS4 (Nelson et 
al., 1985), ETRAN (Berger and Seltzer, 1988), which 
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are of common use in dosimetry and medical physics, 
are not applicable to kilovolt electrons because of the 
approximations introduced by the multiple scattering 
theories implemented in those codes. Our objective here 
is to evidence that PENELOPE gives a reliable descrip­
tion of kilovolt electron backscattering and, therefore , 
can be adopted as a routine tool, e.g., to compute back­
scattering factors for quantitative analysis with EPMA 
and AES. Benchmark comparisons of simulation results 
with a variety of experimental data from the literature 
are presented . This kind of systematic analysis repre­
sents a necessary step prior to the use of any simulation 
code for practical quantitation purposes. The source 
files and interaction database of PENELOPE are avail­
able from the authors upon request. 

The Simulation Algorithm 

PENELOPE is a self-contained simulation code 
(Baro et al., 1995; Sempau et al ., submitted) developed 
to generate electron-photon showers in material systems 
consisting of a number of homogeneous bodies limited 
by well-defined surfaces. PENELOPE is applicable to 
electrons and positrons with energies higher than a few 
hundred eV and to photons with energies above 1 keV . 
In what follows, we will concentrate on the transport of 
kilovolt electrons; the parts of the computer code that 
simulate positrons and photons have no effect for the 
kind of problems considered here. 

Scattering model 

The considered interactions are elastic scattering and 
inelastic collisions ; bremsstrahlung emission is also ac­
counted for by PENELOPE, but has a negligible stop­
ping effect for electrons with energy E less than ~ 100 
ke V. Electron tracks are generated by means of a 
mixed algorithm with automatically selected cutoffs. 
For the sake of completeness, the adopted atomic differ­
ential cross sections (DCSs) are outlined below. In the 
case of compound materials, molecular DCSs are obtain­
ed using the additivity approximation, i.e., as the sum of 
the atomic DCSs of the elements present. Details on the 
theory underlying the Monte Carlo algorithm and a glob ­
al analysis of the reliability of simulation results have 
been published elsewhere (Baro et al., 1995). 

Inelastic collisions: The effect of individual 
inelastic collisions on the projectile is described by the 
energy loss Wand the recoil energy Q, defined by 

(1) 

where p and p' are the linear momenta of the swift elec­
tron before and after the collision and m is the electron 



Simulation of electron backscattering 

mass. The DCS for inelastic collisions ucol derived 
Ji = Z; from the non-relativistic first Born approximation can be 

written in the form 

d
2

ucol 21re4 1 dfl.Q, W) (2) 
dWdQ mv2 WQ dW 

where v is the velocity of the projectile and e is the 
electron charge. The function df(Q, W)/dW is the gener­
alized oscillator strength (GOS), which is studied in 
detail by Inokuti (1971). 

To obtain the collision DCS in analytical form, the 
simple GOS model proposed by Liljequist (1983b) is 
adopted. In this model, the response of the target to in­
elastic collisions is represented by a limited number M 
of excitations (or undamped classical oscillators) char­
acterized by resonance energies W; and oscillator 
strengths Ji. The Liljequist GOS can be written as 

M 
df(Q,W) = ~ F.F(W .·Q W) (3) 

dW L..JJ, 1' ' 
I =I 

The excitation spectrum F(W;,·Q, W) of the i-th oscillator 
is assumed to be 

F(W;;Q, W) =o(W - W;)0(W; - Q) 
+o(W-Q)0(Q - W;) 

(4) 

where o(x) is the Dirac delta function and 0(x) is the 
step function. In the limit of small momentum transfers, 
the GOS reduces to the optical oscillator strength (OOS) , 

M 

dfl.Q = o, W) = Efio(W-W;) 
dW i=I 

(5) 

which has the same analytical form as the OOS underly­
ing Sternheimer's calculations of the density effect cor­
rection (Stemheimer, 1952). In order to reproduce the 
high-energy stopping power given by the Bethe formula 
(Berger and Seltzer, 1982), the excitation energies and 
oscillator strengths must satisfy the following "sum 
rules" 

Eli = Z; 

Eli 1n W; = Zln/ 
(6) 

where I denotes the mean excitation energy, the central 
parameter in the Bethe stopping power formula. 

Following Sternheimer (1952), excitations of each 
atomic electron shell are described by means of a single 
oscillator. We set 
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r--------

(aU -)2 + '!:_!j_ 02 
I 3 Z p 

(7) 

where Z; is the number of electrons in the i-th shell, U; 
is their ionization energy and OP is the plasma energy 
corresponding to the total electron density in the mate­
rial, and a is a semiempirical adjustment factor. The 
term 2fi0/!3Z under the square root in eq . (7) accounts 
for the Lorentz-Lorenz correction. Plasmon excitations 
are described by a single oscillator with binding energy 
"f!_p = 0, resonance energy WP and oscillator strength/2,. 
The parameters WP and Ip should be identified with the 
plasmon energy and the effective number of electrons 
that participate in plasmon excitations (per atom). These 
quantities can be deduced, e.g . , from electron energy­
loss spectra or from measured optical data. When this 
information is not available , we can simply fix the value 
of Ip and set WP = (fp/Z) 112~. This prescription was 
used by Stemheimer et al . (1984) to calculate the density 
effect correction for single-element metals; Ip was taken 
to be the lowest chemical valence of the element. In 
practice, the values of WP andfp have little influence on 
the stopping power for energies E larger than a few 
keV . For instance, in the case of aluminium , the rela­
tive difference between the stopping powers computed 
with/, = 3 and withfp = 0 is less than 1 % for E = 
500 eV and decreases rapidly with increasing energies. 

The semiempirical adjustment factor a in eq. (7) is 
introduced to obtain agreement with the adopted mean 
excitation energy I . It is obtained as the positive root of 
the equation 

Zin/ =fplnWP 
r------

+ ~ F.In (aU.) 2 '!:_!j_ 02 
L..JJ1 I 3Z p 

(8) 

PENELOPE uses the ionization energies U; given by 
Lederer and Shirley (1978). The default mean excitation 
energies I of the elements are the ones recommended by 
Berger and Seltzer (1982). Exchange, relativistic, and 
density effect corrections are introduced as described by 
Salvat and Femandez-Varea (1992) . 

Excitations of a given oscillator correspond to ioni­
zations of the associated atomic electron shell. It is 
assumed that as the result of an inelastic collision with 
the i-th oscillator, a secondary electron is emitted with 
initial energy W - U; in the direction of the momentum 
transfer. Secondary electrons with initial energy larger 
than the absorption energy Eabs adopted in the simulation 
(100 eV in the present calculations) are followed after 
completing the simulation of the primary electron track. 
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Elastic scattering: Elastic scattering is simulated 
by means of the W2D model described by Bar6 et al. 
(1994). This model is based on a simple analytical 
DCS, dueifdO, depending on three parameters. It takes 
advantage of the fact that angular and spatial distribu­
tions after multiple scattering are completely determined 
by a few integral properties of the single scattering 
DCS. Of course, when the number of scattering events 
is small (plural scattering), the angular and spatial dis­
tributions reflect the fine details of the DCS, but these 
are washed out after a sufficiently large number of colli­
sions. An interesting demonstration of this idea applied 
to electron backscattering has been given by Liljequist 
(1983a). 

The quantities of primary importance in plural and 
multiple elastic scattering are the total cross section 

the first transport cross section 

f 
duel 

u1 = (1-cos8)-dw 
dw 

= <T eP - < cos8 >) 

and the second transport cross section 

(9) 

f 
3 2 duel 

<r2 = -(1-cos 8)-dO 
2 dO (11) 
3 2 

= ue12(1-<cos 8>) 

where 8 is the polar scattering angle and <·> indi­
cates the average value in a single collision. These inte­
grated cross sections have been calculated for the ele­
ments Z = 1 to 92 using the PW ADIR code (Salvat and 
Mayol, 1993), which performs a partial wave analysis of 
the Dirac electron wave function for the Dirac-Hartree­

Fock-Slater self-consistent atom field (Salvat et al., 
1987), corrected for exchange and solid-state effects. 

The analytical form of the W2D DCS corresponds 
to a combination of a simple screened Rutherford proc­
ess, which is physically plausible, and a fixed-scattering­
angle process that normally represents a small correc­
tion. Explicitly, 

= <Tel [4A(l+A)(l-B) 
41r (1-cos8+2A) 2 

+ Bo ( cos8 - cos80)] 

(12) 

The angle 80 is a function of the parameters A and B, 
which in tum are determined by requiring that the ac-
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cepted values of u1 and u2 are exactly reproduced; no­
tice that the integral of eq. (12) gives <Tel• as required. 
The form (12) was selected to meet certain simplicity 
requirements needed to formulate the mixed simulation 
algorithm. Indeed, the precise form of the adopted DCS 
is quite irrelevant and similarly accurate results could be 
obtained with any DCS that reproduces the accepted 
values of the integrals of eqs. (9)-(11) (see, e.g., 
Fema.ndez-Varea et al., 1991). 

It has been shown (Bar6 et al., 1994) that the W2D 
model leads to essentially the same multiple scattering 
distributions as the partial wave DCS. The key point is 
that such a simple model permits a considerable reduc­
tion in the required numerical information: instead of the 
DCS, a function of the energy and the scattering angle, 
we only need the total and transport cross sections, three 
functions of the energy. These functions give smooth 
curves when plotted in a log-log representation. They 
have been tabulated for a logarithmic grid of energies 
from which accurate values are obtained by log-log 
cubic spline interpolation. An extra advantage of the 
W2D model as compared with numerical DCSs is that 
the sampling of the scattering angle in individual colli­
sions is done in a purely analytical way, which is much 
faster than numerical sampling methods. 

PENELOPE is coded as a FORTRAN 77 subroutine 
package, which performs the physical part of the simula­
tion. It dictates the path length to the following interac­
tion event, the kind of interaction that takes place, the 
energy loss and the change in direction of movement of 
the particle and the production of secondary electrons . 
A main program, which controls the evolution of the 
tracks and keeps score of the relevant quantities, must be 
provided by the user for each specific geometry. In the 
present simulations, we have used a main program 
adapted to multilayer geometries and axially symmetric 
electron beams. This program yields very detailed in­
formation of the transport process, including angular and 
energy distributions of backscattered and transmitted 
electrons, depth-dose functions, etc. 

Backscattering Coefficient 

The backscattering coefficient 71 is defined as the 
average number of electrons that are ejected from the 
irradiated surface per incident electron. Evidently, 71 is 
a function of the beam energy, the angle of incidence 
relative to the surface normal and the composition of the 
sample. The definition of the backscattering coefficient 

includes the contribution of secondary electrons. In ex­
perimental measurements, this contribution is partially 
suppressed by applying a positive potential to the sample 

or by means of retarding grids placed between the sam­
ple and the detector. Thus, experimental measurements 
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triangles; Neubert and Rogaschewski (1980), squares; 
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Cu 
ical formula given by eq. (13). 

" " " ------------------------ -----------v" 

~ 0 .3 ◊ " 1 * " give the fraction of electrons that leave the sample with * * 
energies higher than the bias potential V0. At this point, 
it is worth recalling that single scattering models used in 

0.2 Monte Carlo simulations are expected to be applicable 
for energies higher than several hundred e V; for lower 
energies, the DCSs are poorly known (and difficult to 

0. 1 
calculate) and the image of well-defined spatial tracks 

C loses validity due to the increasing importance of diffrac-
tion effects. Although the bias potentials commonly 
used (50-100 V) are too low to ensure the applicability 

0 .0 of the simulation scheme for the less energetic detected 
0 20 40 60 electrons, it is fortunate that about 90 % of the backseat-

(keV) 
tered electrons leave the sample with energies larger 

Ea than - 0.1 times the initial energy. In the simulations, 
we assume that electrons are effectively stopped and ab-
sorbed in the medium when their energy falls below 100 
e V; differences between this value and the actual bias 
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Table 1. Parameters of the analytical formula, eq. (13), 
for the backscattering coefficient, fitted for £ 0 ranging 
from 2.5 to 60 keV. 

z a1(Z) a2(Z) 

4 Be 8.229E-3 7.563E-2 

6 C 2.419E-2 6.868E-2 

13 Al l.092E-1 4.486E-2 

22 Ti 2.350E-1 l.415E-2 

26 Fe 2.818E-1 5.566E-3 

29 Cu 3.071E-1 2.866E-3 

41 Nb 3.964E-1 -5.618E-3 

47 Ag 4.359E-1 -8.244E-3 

73 Ta 5.211E-1 -6.617E-3 

79 Au 5.667E-1 -l.137E-2 

92 u 5.964E-1 -l.103E-2 

potential generally cause very small systematic devia­
tions between the simulated backscattering coefficient 
and experimental data. 

Backscattering coefficients at normal incidence, for 
a grid of primary electron energies between 2.5 ke V and 
60 ke V, have been computed from simulations for 11 
elements covering the periodic table. The simulation 
code is relatively fast, even when run on personal com­
puters, and could be significantly improved by using var­
iance reduction techniques (see, e.g . , Bielajew and 
Rogers, 1988), which have not been considered in the 
present analysis. The simulations reported here were 
performed on 80486 DX2 (66 MHz) IBM-compatible 
personal computers ; typical simulation speeds are of the 
order of 3-15 tracks per second, including the simulation 
of secondaries. The number of primary tracks generated 
in each run was large enough to ensure that the statisti­
cal uncertainty of the backscattered fraction (three stand­
ard deviations) be Jess than 1 % . To achieve this re­
quirement, a number of the order of 300,000 tracks had 
to be simulated for low atomic number elements. 

In Figure 1, simulated backscattering coefficients 
are compared with experimental data from different au­
thors. The agreement is seen to be satisfactory, espe­
cially for those elements for which data measured by 
various groups are available. In fact, we have limited 
the present study to backscattering not only because of 
the basic importance of this process but also because of 
the availability of measurements from independent labo­
ratories. The spread of experimental data indicates that 
these are affected by instrumental uncertainties (sample 
preparation, beam instabilities, etc.) and, therefore, a 
comparison with measurements from a single laboratory 
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Figure 2. Backscattering coefficient versus atomic num­
ber Z for 30 ke V electrons at normal incidence. Open 
symbols are experimental data from different sources: 
Hunger and Kuchler (1979), diamonds; Drescher et al. 
(1970), up triangles; Neubert and Rogaschewski (1980), 
squares. Solid circles represent results from 
PENELOPE, joined by straight segments for visual aid, 
the error bars (three standard deviations) are of the same 
size as the symbols. 

may not be conclusive (a fact frequently disregarded in 
the literature). In some cases, the small systematic dif­
ferences between simulation and the set of experimental 
data from a laboratory could be attributed to the afore­
said difference between the experimental bias potential 
and the Monte Carlo absorption energy. Unfortunately, 
not all authors quote the adopted bias potential, so that 
a deeper analysis of this point is not possible. 

As Monte Carlo results are only affected by statis­
tical uncertainties , and this can be made as small as 
needed, simulated data provide a convenient basis for 
analytical formulae. The continuous curves in Figure 1, 
represent the function 

(13) 

where E0 is given in eV. The parameters a1 and a2, de­
termined by numerical fitting of the simulated backscat­
tering coefficient of each element are given in Table 1. 
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Figure 3 . Backscattering coefficient as a function of angle of incidence relative to the surface normal. Open symbols 
represent experimental data from several authors: Drescher et al. (1970), up triangles; Nakhodin et al. (1962), down 
triangles; and Kanter (1957), open circles. Solid circles are results from PENELOPE, joined with straight segments 
for visual aid. The beam energy used in the simulations and in the aforesaid experiments was E0 = 25 ke V. Measure­
ments of Neubert and Rogaschewski (1980), represented with open squares, were performed with E0 = 20 keV. 

----------------------------------------------------------------------------------- -------- ------
Figure 2 displays simulated and measured backscattering 
coefficients for 30 ke V electrons at normal incidence as 
a function of atomic number. This figure is illustrative 
of the fact that , although the backscattering coefficient 
for a given material varies monotonously with the ener­
gy of the incident beam, the variation with Z (for a 
given £ 0) is not continuous but fluctuates about a smooth 
curve. These fluctuations , which arise from the non­
monotonous behaviour of the elastic and inelastic DCSs 
as functions of the atomic number , limit the accuracy 
attainable with empirical analytical formulae for 71(Z,E0). 

Conversely, simple backscattering theories that yield 
analytical expressions for 71(Z,E0), and thus predict a 
continuous variation of the backscattering coefficient 
with Z, can be quite accurate for some elements but will 
necessarily introduce errors of the order of these "natu­
ral" fluctuations for other elements (those that depart 
from the smooth behaviour) . 

Variation with angle of incidence 

Owing to the approximate nature of the elastic DCS, 
PENELOPE provides a good description of backscatter­
ed electrons that have suffered a large number (say > 
15) of elastic scattering events. However, a fraction of 
electrons, those which contribute to the quasielastic 
peak, are backscattered after a single or very few elastic 
collisions (single or plural scattering) with small energy 
losses. As the DCS is strongly peaked at small scatter­
ing angles, the number of backscattered electrons that 
have only undergone plural scattering increases with the 
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angle of incidence (i.e . , when the specimen is tilted rela­
tive to the incident beam). Thus, the variation of the 
backscattering coefficient with the angle of incidence of­
fers a stringent test for the validity of the elastic scatter­
ing model. 

The backscattering coefficients for 25 ke V incident 
beams and four different materials are displayed in Fig­
ure 3, as functions of the angle of incidence a relative 
to the surface normal (a = 0 for normal incidence) . It 
is seen that, on average, simulation results agree well 
with experimental data taken from different authors, 
even for relatively large incidence angles . We do not 
observe any trend of the simulation results to deviate 
from the experiments at large angles. 

Variation with sample thickness 

For thin foils, the backscattering coefficient in­
creases monotonously with thickness to reach the satura­
tion value, the bulk backscattering coefficient, for foil 
thicknesses of the order of half the Bethe range, i.e., the 
mean path length obtained from the continuous slowing 
down approximation . This fact can be used to measure 
the thickness of thin foils (Niedrig, 1982). 

It is important to recall that the W2D model is only 
applicable for multiple scattering, i.e., when the average 
number of elastic collisions per electron track is of the 
order of 15 or larger. Therefore, simulation with 
PENELOPE should be limited to films thick enough to 
satisfy this requirement. Fortunately, this is not too 
strong a limitation and the simulation can be applied to 
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Figure 4. Backscattering coefficient for thin foils as a 
function of the foil thickness. Open symbols are experi­
mental data: Neubert and Rogaschewski (1984), squares; 
Cosslett and Thomas (1965), circles; Niedrig and Sieber 
(1971), up triangles; Seidel (1972), stars. Solid circles 
are results from PENELOPE , joined by straight seg­
ments for visual aid. The dashed line represents the 
empirical formula of Niedrig (1982, eq. (45)). 

------------ ------------------
fairly thin films; characteristic average numbers of 
elastic collisions (per backscattered electron track) for 
different materials and energies are indicated in Table 2. 

Backscattering coefficients for thin foils, simulated 
and measured by different groups, are displayed in Fig­
ure 4, as functions of foil thickness . The practical diffi­
culties of this kind of measurements are again evident 
from the spread of experimental data. Results from an 
empirical formula proposed by Niedrig (eq. (45) in 
Niedrig, 1982) are also included for comparison. Our 
calculated values are seen to agree reasonably well with 
the data of Cosslett and Thomas (1965), Seidel (1972) 
and Neubert and Rogaschewski (1984) although differ­
ences are not always negligible. 

Energy distribution of backscattered electrons 

The energy distribution of backscattered electrons is 
of importance in quantitative analysis with EPMA and 
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Figure 5. Energy distribution of backscattered electrons as a function of E = EIE0. Solid circles are experimental data 
of Darlington (1975) (normalized so as to give the backscattering coefficient obtained by this author). Dashed lines 
represent measurements by Matsukawa et al. (1974). Histograms are results from the detailed simulation code LEEPS 
of Femandez-Varea et al. (1996). Open circles are results generated with PENELOPE. 
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Table 2. Average number of elastic collision s (N) suffered by the primary electrons backscattered in foils of different 
thicknesses (D). 

Al Cu 

E0(keV) D(mm) N D(mm) 

20 100 24.3 100 

30 400 32.7 50 

40 400 17.9 50 

AES. This distribution enters into empirical calculations 
of the so-called backscattering correction or R-factor. In 
AES (see, e.g. , Merlet et al., 1992), this factor is in­
tended to account for the part of the Auger signal origi­
nated by backscattered electrons in their way back to the 
sample surface. In the case of EPMA (Heinrich and 
Newbury, 1991), the R-factor is defined as the ratio of 
the number of ionizations actually produced in the speci­
men to the number that would have been generated if no 
electrons had been backscattered. 

Energy distributions of backscattered electrons for 
different elemental solids have been measured by Matsu­
kawa et al. (1974) and Darlington (1975). Simulation 
results obtained from PENELOPE are compared with 
experimental data in Figure 5. The overall agreement is 
seen to be satisfactory although, owing to the scarcity of 
measurements, conclusions on the simulation reliability 
are uncertain from this comparison. 

Ag Au 

N D(mm) N D(mm) N 

63 . 1 50 34.6 30 24.7 

22.6 50 25.9 30 18.9 

19.3 50 21.5 30 15.6 
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A complementary assessment of the accuracy of 
PENELOPE regarding energy distributions and other 
characteristics of backscattering can be inferred from a 
comparison of the present results with those from a 
more accurate Monte Carlo code. To this end, simula­
tions have been performed using the recently developed 
program LEEPS (Femandez-Varea et al., 1996), which 
performs detailed simulation of electron tracks using 
accurate DCSs. Elastic scattering is described by means 
of numerical DCSs calculated by the method of partial 
waves for a scattering potential that includes exchange 
and solid-state effects. The DCS for inelastic collisions 
is obtained from an optical-data model, i.e., from the 
Born approximation using experimentally determined 
OOSs, and includes exchange corrections through a 
modified Ochkur approximation. Femandez-Varea et al. 
(1996) have shown that LEEPS correctly reproduces 
energy distributions of electrons transmitted through thin 



E. Acosta et al. 

films as measured by electron energy loss spectroscopy 
(EELS). Typical energy resolutions in EELS experi­
ments are of a few eV and, hence, this kind of experi­
ment provides the most stringent test for the simulation 
of energy losses. The reliability of the backscattered 
electron energy distributions generated by LEEPS is evi­
dent from Figure 5. It is also clear that PENELOPE 
yields distributions that are essentially equivalent to 
those of LEEPS, in spite of the simplifications intro­
duced in the inelastic DCSs. 

Conclusions 

In conclusion, the scattering model implemented in 
PENELOPE yields a realistic description of the back­
scattering of kilovolt electron in solids. We have pre­
sented benchmark comparisons with a variety of experi­
mental data, involving materials with different atomic 
numbers and covering the energy range of interest in 
surface analytical techniques, from a few keV to 60 
keV. Our results agree well with the experiments, in 
fact as well as those from the much more sophisticated 
Monte Carlo algorithm LEEPS (F ernandez-Varea et al . , 
1996). Therefore, the use of PENELOPE in practical 
applications is well justified. Work on quantitative 
EPMA based on this simulation code is in progress; pre­
liminary results for multilayer specimens have been 
published elsewhere (Llovet et al . , 1996). 
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Discussion with Reviewers 

M. Dapor: Vicanek and Urbassek (1991) have recently 
suggested that the backscattering coefficient of light ions 
is a simple function of the ratio between the range and 
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the transport mean free path. According to their theory, 
in other words, the backscattering coefficient essentially 
depends on the mean number of large-angle collisions 
suffered by the particles before slowing down to rest. 
Can you give a comment regarding the importance of 
the transport cross section in backscattering yield 
determination? 
Authors: As for elastic scattering, the backscattering 
yield results from a delicate balance between single 
large-angle collisions and multiple small-angle scattering. 
The global effect is primarily governed by the transport 
cross section or, more precisely, by the mentioned ratio 
if energy loss is considered (see, e.g., Liljequist, 
1983a). Indeed, in order to have the correct angular 
deflection per unit path length, the W2D DCS imple­
mented in PENELOPE uses transport mean free path 
values obtained from accurate partial-wave calculations. 

K. Murata: Have you checked whether your model 
predicts appropriate results for the angular distribution 
of backscattered electrons? 
Authors: For thick samples, the angular distribution of 
backscattered electrons is smooth and rather structure­
less, and is nearly reproduced by any sound scattering 
model. A more stringent test of the elastic scattering 
model is provided by the angular distribution of elec­
trons ejected from the sample after one (or a few) elastic 
collisions with small energy loss or by the angular distri­
butions of electrons transmitted through thin foils . 
However, as PENELOPE yields reliable results only un­
der multiple scattering conditions, discrepancies between 
experiment and simulation results are to be expected for 
these extreme cases. 

K. Murata: We can see a very high peak in the energy 
distribution of backscattered electrons near the incident 
energy, especially for high atomic number materials and 
low energies, which is not seen in the experimental re­
sults. Could you comment on how the peak is yielded 
and the validity of your simulation? 
Authors: This peak is due to electrons that are back­
scattered after a single large-angle elastic collision (pos­
sibly combined with plural small-angle interactions) with 
small energy loss. This quasi-elastic peak is also ob­
tained with the much more sophisticated code LEEPS 
and in experiments (see, e.g . , Jablonski et al., 1989). 
The absence of such a quasi-elastic peak in the experi­
mental results of Darlington (1975) is likely due to poor 
energy resolution. The agreement between energy dis­
tributions generated by LEEPS and PENELOPE pro­
vides a clear indication of the validity of the latter code. 

D.E. Newbury: Consider a simple vertical planar 
boundary between two materials of different composi-
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tion. How will your simulation handle the problem of 
boundary crossing? 
Authors: As mentioned in the text, PENELOPE has 
been devised to work for complex geometries. Interface 
crossings are handled as in purely detailed simulations, 
i.e., when the particle arrives at a surface separating two 
media with different composition, it is stopped just after 
the interface, and simulation is continued using the scat­
tering data of the new medium. For purely detailed sim­
ulation, this procedure is justified by the Markovian 
character of the interaction process. In the case of 
mixed simulation, the algorithm implemented in 
PENELOPE properly accounts for the average effect of 
soft (elastic and inelastic) interactions along the step that 
ends at the boundary (see Bar6 et al . , 1995). 

D.E. Newbury: The description of the PENELOPE 
model seems to consider only pure element targets. 
Please describe explicitly how you incorporate multiple 
elements into your Monte Carlo calculation, for exam­
ple, if a compound such as GaP or GaAs is to be simu­
lated. 
Authors: Regarding elastic scattering, the simulation of 
compounds is performed by using a molecular DCS 
equal to the sum of the atomic DCS of all atoms in a 
molecule (additivity approximation). In other words, the 
integrated cross sections (9)-(11) per molecule are ob­
tained by adding the corresponding values of the atoms 
present. The inelastic DCS is formally the same as for 
single elements, i.e., the GOS is given by eq. (3), but 
now the summation runs over the bound shells of the 
different atoms and the mean excitation energy I ade­
quate to the compound must be used. Thus , the simula­
tion of compounds proceeds along the same lines as for 
pure elements. 

P. Rez: One can produce a curve like Figure 2 (back­
scattering as function of kV) using a number of different 
(and contradictory) theoretical models. The key param­
eter appears to be the ratio of elastic to inelastic 
scattering . Would the authors like to comment on how 
significant this ratio is for all backscattering meas­
urements? 
Authors: Yes. It seems that the ratio r(E0) of the 
transport mean free path to the continuous slowing down 
approximation range, evaluated for the initial electron 
energy E0, practically determines the backscattering co­
efficient (see the discussion in Liljequist, 1983a). If this 
ratio remains constant for decreasing energies, simulated 
electron trajectories obey a simple linear scaling law, 
which implies that the backscattering coefficient is in­
dependent of E0. However, such an idealized "linear" 
process has only a limited validity since it is incompati­
ble with the observed energy dependence of the back-
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scattering coefficient. Possibly, a detailed analysis of 
the energy dependence of the ratio r(E) would permit a 
qualitative understanding of this experimental fact. On 
the other hand, when 71 is nearly energy independent (as 
it seems to happen for more or less wide energy inter­
vals depending on the atomic number), the aforemen­
tioned scaling property of electron tracks implies that 
angular and energy distributions (the latter as a function 
of E!E0) of backscattered electrons are also approximate­
ly independent of E0. 

P. Rez: In a more sophisticated view of inelastic scat­
tering, the cross sections would be derived from meas­
ured optical oscillator strengths . Do the authors think 
that this would be necessary for low voltage electrons? 
Are they worried about the neglect of exchange (in both 
elastic and inelastic scattering) at low energies? 
Authors: Certainly, the use of more accurate inelastic 
DCSs for low energies would be required to obtain ener­
gy distributions with high resolutions , of the order of 
100 eV or less, not only for low-voltage electrons. The 
discrete nature of the OOS used in PENELOPE will 
show up when the number of inelastic collisions is small 
(thin samples), but it is smeared out after multiple in­
elastic scattering . We would like to stress the fact that 
the whole simulation algorithm has been tailored to be as 
simple as possible and still yield accurate results under 
multiple scattering conditions . When these are not satis­
fied, one should use more realistic inelastic scattering 
models , based on measured optical oscillator strength s, 
such as those implemented in LEEPS. Exchange effects 
have been approximately accounted for by means of sim­
ple approximations. The integrated elastic cross sec­
tions, eqs. (9)-(11) were obtained from partial wave cal­
culations for the electrostatic field of the target atom 
plus the local exchange field proposed by Furnes s and 
McCarty (1973) , exchange corrections are negligible for 
E > 5 keV. In the case of inelastic scattering , ex­
change effects are introduced only for close collision s 
(i.e . , those on the Bethe ridge). These are described by 
using the (relativistic) Moller DCS instead of the Ruther ­
ford DCS . This correction is essential to obtain the cor­
rect energy-dependence of the stopping power at high 
energies . 

R. Gauvin : Explain how your elastic cross sections are 
different to those computed by Czyzewski et al . (1990) 
since those cross sections are readily available to the 
authors under request . 
Authors: The atomic potentials underlying our elastic 
cross section calculations and those used by Czyzewski 
et al. (1990) are similar (self-consistent free-atom fields 
of comparable accuracy). However, we disregard solid­
state effects, which are accounted for within the muf-
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fin-tin approximation by Czyzewski et al . (1990), and 
include electron-exchange effects by means of a local 
approximate potential (see Salvat and Mayol, 1993). 
The PW ADIR code (which is obtainable from the CPC 
program Library, Queen's University of Belfast, N. 
Ireland) permits the calculation of accurate elastic cross 
sections for energies up to about 1 Me V, whereas the 
tabulation of Czyzewski et al. (1990) is limited to the 
energy range 20 e V to 20 ke V. 

R. Gauvin: From the compilation of David C. Joy 
about experimental measurements of electron backscat­
tering coefficient, more data are available for Au and C 
than those presented in Figure 1. Since variations of 
50 % are common for measurements below 3 ke V, it 
seems very difficult to validate any Monte Carlo code 
since experimental measurements are generally inaccu­
rate owing to beam current fluctuations, surface rough­
ness and contamination which are more important at low 
energy . Also, the more we find experimental data, the 
more we observe scatter . So, since your simulations 
agree well with few experimental points , can we expect 
more disagreement when more experimental points will 
become available? 
Authors: We certainly agree in that benchmark com­
parisons with measured backscattering coefficients do 
not provide the ultimate test of the validity of a Monte 
Carlo code. However , assuming that experimental un­
certaintie s are of a random nature , it seems sensible to 
conclude that a code which provides an average descrip­
tion of the data should be trustworthy . It would be de­
sirable to have many data , from different laboratories , 
for the same materials and energies , since then a statis­
tical analysis of these would yield an estimate that is 
more reliable than the separate data . 

R. Gauvin: You claim that analytical equations are 
faster to compute cross sections than interpolation in a 
data base . This depends on the way the table and the 
interpolation scheme are programmed. We have found 
that interpolation is faster than simple analytical 
equations (Browning et al., 1995) when clever tech­
niques of programation are used. 
Authors: We agree that total elastic cross section can 
be computed faster by interpolation than from analytical 
formulae . Indeed , in PENELOPE O'el (as well as other 
energy-dependent quantities) is obtained by interpolation . 
Our claim, however, refers to the sampling of the scat­
tering angle from the differential cross section . In 
LEEPS we use a purely numerical, accurate and effi­
cient sampling algorithm from Mott's differential cross 
section; the one implemented in PENELOPE is faster 
and yields essentially the same angular distributions 
(provided the number of scattering events is statistically 
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sufficient). 

P. Hovington: What is the cutoff energy values you are 

using to transfer to and from detailed simulations? Is it 

a function of E and Z! 
Authors: The cutoff energies are selected by the user 

in such a way that multiple scattering conditions are sat­

isfied, i.e., at least about 15 inelastic interactions must 

occur on average along an electron trajectory (in thin 

layers this minimum number may not be reached). In 
the present simulations , a value of 100 eV was adopted 

to separate "hard" from "soft" inelastic collisions. No­

tice that this value is also smaller than the width of the 
bins used to tally energy distributions of backscattered 

electrons. 

D. Liljequist: The values of the coefficients a1 (Z) and 

ai(Z), eq. (13), seem to be regularly varying with atom­

ic number Z. Is it possible to make a fit also to the 

variation of these coefficients with Z - at least to some 

specified accuracy? This would give a good practical 

formula in E and z. As a difficulty in this respect, the 

authors point to fluctuations in the dependence on Z, but 

these fluctuations do seem rather small to me (Fig. 2); 

should they not be next to negligible in the first approxi­

mation, bearing in mind the spread of the experimental 

data? 
Authors: Actually, the original idea concerning this 

issue was to obtain an analytical expression for 'Y/ as a 

function of E0 and Z. After fitting the coefficients in 

eq. (13) as functions of Z, we observed that the depend­

ence was not smooth and severe discontinuities ap­

peared. As a result of this feature, the values of the 

backscattering coefficient could not be reproduced. In 
fact, different functional dependencies were essayed for 

11(£0 ,Z), and the same problem arose for them all. 

D. Liljequist: The simulations are claimed to predict a 

partial but not negligible fluctuating (non-smooth) de­

pendence of the bulk backscattering on Z at a given inci­

dent energy. This observation is interesting, but is there 

any significant experimental evidence to support it? 

Again, the fluctuations in Figure 2 seem very small to 

me. 
Authors: The fluctuations in the Z dependence of 'Y/ 

given by simulated data are indeed small at E0 = 30 

ke V, but they are larger than the statistical uncertainties 

of simulated values . It should also be noted that larger 

fluctuations are expected for lower energies. As the 

spread of experimental data in Figure 2 is greater than 

these fluctuations, no experimental evidence can be pro­

vided unless a more accurate experimental database is 

available . 

638 

D. Liljequist : A very good point is made by the au­

thors when they argue that the spread of experimental 

data indicates the presence of "instrumental uncertain­

ties" (including sample preparation, etc.) and that, 

therefore, a comparison with measurements from a sin­

gle laboratory may not be conclusive. Not only can one 

suspect some experimental results to be in "error", but 

quite fortuitous agreement may also occur. The reliabil­

ity of a code is thus, as regards benchmark comparisons, 

limited by the spread among the (unfortunately rather 

few) available experimental data. If theoretically be­

lieved to be accurate, the code may be regarded as a 

prediction, awaiting future tests. If, finally, accuracy is 

regarded as desirable for a particular application, should 

not this application be possible to use as a more strin­

gent test? Do the authors have some further comment on 

this, with regard to the expected accuracy of their code? 

Authors: As already mentioned, PENELOPE is a gen­

eral-purpose code which can be applied from about 1 
ke V to several hundred Me V, provided multiple scatter ­

ing conditions are fulfilled. Applications to electron 

probe microanalysis, detector response characterization , 

and medical electron-beam dosimetry are currently in 

progress. These applications cover different energy 

ranges and, in general, we find very good agreement 

with experiments. It is on the basis of this agreement 
that we are confident about the global accuracy of the 
code . 
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