505 research outputs found

    Standardization of cassava mahewu fermentation and assessment of the effects of iron sources used for fortification

    Get PDF
    Cassava root is the main staple for 70% of the population in Mozambique, particularly in inaccessible rural areas, but is known to be low in iron. Anaemia is a public health problem in mothers and preschool children in Mozambique and up to 40% of these cases are probably due to dietary iron deficiency. The World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) recognize the fortification of foodstuff as an effective method to remedy dietary deficiencies of micronutrients, including iron. Cassava mahewu, a non-alcoholic fermented beverage is prepared at subsistence level from cassava roots using indigenous procedures. The aim of the study was to standardize mahewu fermentation and investigate if the type of cassava fermented, or the iron compound used for fortification affected the final product. Roots of sweet and bitter varieties of cassava from four districts (Rapale, Meconta, Alto Molocue and Zavala) in Mozambique, were peeled, dried and pounded to prepare flour. Cassava flour was cooked and fermented under controlled conditions (45°C for 24 h). The fermentation period and temperature were set, based on the findings of a pilot study which showed that an end-point pH of about 4.5 was regularly reached after 24 h at 45°C. Cassava mahewu was fortified with ferrous sulfate (FeSO4.7H2O) or ferrous fumarate (C4H2FeO4) at the beginning (time zero) and at the end of fermentation (24 h). The amount of iron added to the mahewu was based on the average of the approved range of iron used for the fortification of maize meal. The mean pH at the endpoint was 4.5, with 0.29% titratable acidity. The pH and acidity were different to those reported in previous studies on maize mahewu, whereas the solid extract of 9.65% was found to be similar. Lactic acid bacteria (LAB) and yeast growth were not significantly different in mahewu fortified with either of the iron compounds. There was no significant difference between cassava mahewu made from bitter or sweet varieties. A standard method for preparation and iron fortification of cassava mahewu was developed. It is recommended that fortification occurs at the end of fermentation when done at household level.Keywords: Cassava mahewu, fermentation, ferrous fumarate, ferrous sulfate, iron fortification, Mozambiqu

    Forced Convection Heat Transfer from a Finite-Height Cylinder

    Full text link
    [EN] This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.The simulation was carried out using the supercomputing facilities of the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of Technology. MGV has been partially supported by grant TRA2012-37714 of the Spanish Ministry of Economy and Competitiveness.García Villalba, M.; Palau-Salvador, G.; Rodi, W. (2014). Forced Convection Heat Transfer from a Finite-Height Cylinder. Flow, Turbulence and Combustion. 93(1):171-187. https://doi.org/10.1007/s10494-014-9543-7S171187931Ames, F., Dvorak, L.: Turbulent transport in pin fin arrays: experimental data and predictions. J. Turbomach. 128(1), 71–81 (2006)Armstrong, J., Winstanley, D.: A review of staggered array pin fin heat transfer for turbine cooling applications. J. Turbomach. 110, 94 (1988)Breuer, M., Rodi, W.: Large eddy simulation of complex turbulent flows of practical interest. In: Hirschel, E. (ed.) Flow Simulation with High Performance Computers II, Notes on Numerical Fluid Mechanics, Vol. 52, pp 258–274. Vieweg, Braunschweig (1996)Chen, S., Sanitjai, S., Ghosh, K., Goldstein, R.: Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: uniform-diameter circular cylinder. Appl. Therm. Eng. 49, 73–78 (2012)Delibra, G., Hanjalic, K., Borello, D., Rispoli, F.: Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment. Int. J. Heat Fluid Flow 31(5), 740–753 (2010)Denev, J.A., Fröhlich, J., Bockhorn, H.: Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys. Fluids 21, 015101 (2009)Donnert, G.D., Kappler, M., Rodi, W.: Measurement of tracer concentration in the flow around finite-height cylinders. J. Turbul. 8, 33 (2007)Frederich, O., Thiele, F.: Turbulent flow dynamics caused by a truncated cylinder. Int. J. Heat Fluid Flow 32(3), 546–557 (2011)Fröhlich, J., García-Villalba, M., Rodi, W.: Scalar mixing and large–scale coherent structures in a turbulent swirling jet. Flow Turbul. Combust. 80, 47–59 (2008)Fröhlich, J., Rodi, W.: LES of the flow around a cylinder of finite height. Int. J. Heat Fluid Flow 25, 537–548 (2004)García-Villalba, M., Fröhlich, J.: LES of a free annular swirling jet–Dependence of coherent structures on a pilot jet and the level of swirl. Int. J. Heat Fluid Flow 27(5), 911–923 (2006)García-Villalba, M., Li, N., Rodi, W., Leschziner, M.A.: Large eddy simulation of separated flow over a three-dimensional axisymmetric hill. J. Fluid Mech. 627, 55–96 (2009)Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)Hinckel, J.N., Nagamatsu, H.T.: Heat transfer in the stagnation region of the junction of a circular cylinder perpendicular to a flat plate. Int. J. Heat Mass Tran. 29(7), 999–1005 (1986)Hinterberger, C.: Dreidimensionale und tiefengemittelte Large-eddy-simulation von flachwasserströmungen. University of Karlsruhe (2004). Ph.D. thesisHölscher, N., Niemann, H.J.: Some aspects about the flow around a surface-mounted circular cylinder in a turbulent shear flow. In: Proceedings of 6th Symp. Int. Turbulent Shear Flows, ToulouseKrajnovic, S.: Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676, 294–317 (2011)Lilly, D.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)Morgan, V.T.: The overall convective heat transfer from smooth circular cylinders. Adv. Heat Tran. 11, 199–264 (1975)Ničeno, B., Dronkers, A., Hanjalić, K.: Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation. Int. J. Heat Fluid Flow 23(2), 173–185 (2002)Palau-Salvador, G., García-Villalba, M., Rodi, W.: Scalar transport from point sources in the flow around a finite-height cylinder. Environ. Fluid Mech. 11, 611–625 (2011)Palau-Salvador, G., Stoesser, T., Fröhlich, J., Kappler, M., Rodi, W.: Large-eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84, 239–275 (2010)Pattenden, R., Turnock, S., Zhang, X.: Measurements of the flow over a low-aspect ratio cylinder mounted on a ground plate. Exp. Fluids 39, 10–21 (2005)Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Stanford University (2001). Ph.D. thesisPopovac, M., Hanjalic, K.: Vortices and heat flux around a wall-mounted cube cooled simultaneously by a jet and a crossflow. Int. J. Heat Mass Transfer 52, 4047–4062 (2009)Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1061–1068 (1983)Rostamy, N., Sumner, D., Bergstrom, D.J., Bugg, J.D.: Local flow field of a surface-mounted finite circular cylinder. J. Fluids Struct. 34, 105–122 (2012)Sanitjai, S., Goldstein, R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Tran 47, 4795–4805 (2004)Sanitjai, S., Goldstein, R.J.: Heat transfer from a circular cylinder to mixtures of water and ethylene glycol. Int. J. Heat Mass Tran. 47, 4785–4794 (2004)Sparrow, E.M., Stahl, T.J., Traub, P.: Heat transfer adjacent to the attached end of a cylinder in crossflow. Int. J. Heat Mass Tran. 27(2), 233–242 (1984)Stone, H.: Iterative solution of implicit approximations of multidimensional partial differential equations for finite difference Methods. SIAM J. Numer. Anal. 5, 530–558 (1968)Sumner, D.: Flow above the free end of a surface-mounted finite-height circular cylinder: a review. J. Fluids Struct. 43, 41–63 (2013)Tsutsui, T., Igarashi, T., Nakamura, H.: Fluid flow and heat transfer around a cylindrical protuberance mounted on a flat plate boundary layer. JSME Ser. B 43(2), 279–287 (2000)Tsutsui, T., Kawahara, M.: Heat transfer around a cylindrical protuberance mounted in a plane turbulent boundary layer. J. Heat Tran. 128, 153–161 (2006)Tutar, M., Akkoca, A.: Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin-and-tube heat exchangers. Num. Heat Tran. A 46, 301–321 (2004)Zhu, J.: Low diffusive and oscillation–free convection scheme. Comm. Appl. Num. Meth. 7, 225–232 (1991)Zukauskas, A.A.: Heat transfer from tubes in cross-flow. Adv. Heat Tran. 8, 93–160 (1972

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    An Evaluation Model For Web-based 3D Mass Customization Toolkit Design

    Get PDF
    The development of geometric modelling technologies and web technologies provides the ability to present a virtual 3D product in a mass customization (MC) toolkit. Compared with 2D graphic toolkits, 3D toolkit design requires better consideration of individual customer needs, consumer and toolkit interaction, and also a means of integrating with the underlying technical infrastructure. However, there is currently no widely accepted model or criteria to regulate and evaluate 3D MC toolkit design. Given these considerations, in this paper we provide an evaluation model for web-based 3D toolkits and a heuristic evaluation of two representative commercial web-based 3D toolkits. The evaluation results indicate the usefulness and effectiveness of the model as a scale for evaluating 3D toolkits. It also reveals that despite a fair amount of effort that has been devoted to theoretical research, current 3D toolkits are still at an early development stage. We therefore conclude this paper by identifying and encouraging further topics and questions as directions for future research

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI

    Organization of Excitable Dynamics in Hierarchical Biological Networks

    Get PDF
    This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks

    Imaging of Functional Connectivity in the Mouse Brain

    Get PDF
    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models

    HIF-Independent Regulation of Thioredoxin Reductase 1 Contributes to the High Levels of Reactive Oxygen Species Induced by Hypoxia

    Get PDF
    Cellular adaptation to hypoxic conditions mainly involves transcriptional changes in which hypoxia inducible factors (HIFs) play a critical role. Under hypoxic conditions, HIF protein is stabilized due to inhibition of the activity of prolyl hydroxylases (EGLNs). Because the reaction carried out by these enzymes uses oxygen as a co-substrate it is generally accepted that the hypoxic inhibition of EGLNs is due to the reduction in oxygen levels. However, several studies have reported that hypoxic generation of mitochondrial reactive oxygen species (ROS) is required for HIF stabilization. Here, we show that hypoxia downregulates thioredoxin reductase 1 (TR1) mRNA and protein levels. This hypoxic TR1 regulation is HIF independent, as HIF stabilization by EGLNs inhibitors does not affect TR1 expression and HIF deficiency does not block TR1 hypoxic-regulation, and it has an effect on TR1 function, as hypoxic conditions also reduce TR1 activity. We found that, when cultured under hypoxic conditions, TR1 deficient cells showed a larger accumulation of ROS compared to control cells, whereas TR1 over-expression was able to block the hypoxic generation of ROS. Furthermore, the changes in ROS levels observed in TR1 deficient or TR1 over-expressing cells did not affect HIF stabilization or function. These results indicate that hypoxic TR1 down-regulation is important in maintaining high levels of ROS under hypoxic conditions and that HIF stabilization and activity do not require hypoxic generation of ROS

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research
    corecore