57 research outputs found

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio

    A mobile ELF4 delivers circadian temperature information from shoots to roots

    Get PDF
    Extended Data and Source Data can be found at https://doi.org/10.1038/s41477-020-0634-2Ajuts: the Mas laboratory is funded by the FEDER/Spanish Ministry of Economy and Competitiveness, the Ramon Areces Foundation and the Generalitat de Catalunya (AGAUR). The P.M. laboratory also acknowledges financial support from the CERCA Program, Generalitat de Catalunya and by the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program for Centers of Excellence in R&D 2016-2019 (SEV-2015-0533).The circadian clock is synchronized by environmental cues, mostly by light and temperature. Explaining how the plant circadian clock responds to temperature oscillations is crucial to understanding plant responsiveness to the environment. Here, we found a prevalent temperature-dependent function of the Arabidopsis clock component EARLY FLOWERING 4 (ELF4) in the root clock. Although the clocks in roots are able to run in the absence of shoots, micrografting assays and mathematical analyses show that ELF4 moves from shoots to regulate rhythms in roots. ELF4 movement does not convey photoperiodic information, but trafficking is essential for controlling the period of the root clock in a temperature-dependent manner. Low temperatures favour ELF4 mobility, resulting in a slow-paced root clock, whereas high temperatures decrease movement, leading to a faster clock. Hence, the mobile ELF4 delivers temperature information and establishes a shoot-to-root dialogue that sets the pace of the clock in root

    Prevalence and risk factors for Giardia duodenalis infection among children: A case study in Portugal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Giardia duodenalis </it>is a widespread parasite of mammalian species, including humans. The prevalence of this parasite in children residing in Portugal is currently unknown. This study intended to estimate <it>G. duodenalis </it>infection prevalence and identify possible associated risk factors in a healthy paediatric population living in the District of the Portuguese capital, Lisbon.</p> <p>Methods</p> <p>Between February 2002 and October 2008, 844 children were randomly selected at healthcare centres while attending the national vaccination program. A stool sample and a questionnaire with socio-demographic data were collected from each child. <it>Giardia </it>infection was diagnosed by direct examination of stools and antigen detection by ELISA.</p> <p>Results</p> <p>The population studied revealed a gender distribution of 52.8% male and 47.2% female. Age distribution was 47.4% between 0-5 years and 52.6% between 6-15 years.</p> <p>The prevalence of <it>Giardia </it>infection was 1.9% (16/844) when estimated by direct examination and increased to 6.8% (57/844) when ELISA results were added. The prevalence was higher among children aged 0-5 years (7.8%), than among older children (5.8%), and was similar among genders (6.9% in boys and 6.5% in girls). The following population-variables were shown to be associated risk factors for <it>G. duodenalis </it>infection: mother's educational level (odds ratio (OR)= 4.49; confidence interval (CI): 1.20-16.84), father's educational level (OR = 12.26; CI: 4.08-36.82), presence of <it>Helicobacter pylori </it>infection (OR = 1.82; CI: 1.05-3.15), living in houses with own drainage system (OR = 0.10; CI: 0.02-0.64) and reported household pet contact, especially with dogs (OR = 0.53; CI: 0.31-0.93).</p> <p>Conclusion</p> <p>The prevalence of giardiasis in asymptomatic children residing in the region of Lisbon is high. Several risk factors were associated with <it>Giardia </it>prevalence and highlight the importance of parents' education and sanitation conditions in the children's well being. The association between <it>G. duodenalis </it>and <it>H. pylori </it>seems an important issue deserving further investigation in order to promote prevention or treatment strategies.</p

    Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings

    Get PDF
    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod–insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states

    The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana

    Get PDF
    Wagner L, Schmal C, Staiger D, Danisman S. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. Plant Methods. 2017;13(1): 2.Background The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool—PALMA—that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. Results We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. Conclusions PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link
    corecore