14 research outputs found

    Peripheral Innate Lymphoid Cells Are Increased in First Line Metastatic Colorectal Carcinoma Patients: A Negative Correlation With Th1 Immune Responses

    Get PDF
    Several distinct innate lymphoid cell (ILC) populations have been recently identified and shown to play a critical role in the immediate immune defense. In the context of tumors, there is evidence to support a dual role for ILCs with pro-or antitumor effects, depending on the ILC subset and the type of cancer. This ambivalent role has been particularly well-described in colorectal cancer models (CRC), but the presence and the evolution of ILCs in the peripheral blood of metastatic CRC (mCRC) patients have not yet been explored. Here, we investigated the distribution of ILC subsets in 96 mCRC patients who were prospectively included in the "Epitopes-CRCO2" trial. Peripheral bloodmononuclear cells (PBMCs) were analyzed by flow cytometry at metastatic diagnosis and after 3-months of treatment. The treatments consisted of Oxaliplatin-based chemotherapies for 76% of the patients or Folfiri (5FU, Irinotecan) chemotherapies for 14% of patients. Compared to healthy donors, the frequency of total ILCs was dramatically increased at metastatic diagnosis. CD56(+) ILC1-like cells were expanded, whereas ILC2, NCR- ILCP and NCR+ ILCP subsets were decreased. Combined analysis with the systemic anti-telomerase hTERT Th1 CD4 response revealed that patients with low anti-TERT Th1 CD4 responses had the highest frequencies of total ILCs at diagnosis. Of those, 91% had synchronous metastases, and their median progression-free survival was 7.43 months (vs. 9.17 months for the other patients). In these patients, ILC1 and ILC2 were significantly decreased, whereas CD56(+) ILC1-like cells were significantly increased compared to patients with low frequency of total ILCs and high anti-TERT responses. After treatment, the NCR+ ILCP were further decreased irrespective of the chemotherapy regimen, whereas the balance between ILC1 and CD56(+) ILC1-like cells was modulated mainly by the Folfiri regimen in favor of ILC1. Altogether our results describe the effects of different chemotherapies on ILCs in mCRC patients. We also establish for the first time a link between frequency of ILCs and anti-tumor CD4 T cell responses in cancer patients. Thus, our study supports an interest in monitoring ILCs during cancer therapy to possibly identify predictive biomarkers in mCRC

    ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence.

    Get PDF
    Non-muscle-invasive bladder cancer (NMIBC) is a highly recurrent tumor despite intravesical immunotherapy instillation with the bacillus Calmette-Guérin (BCG) vaccine. In a prospective longitudinal study, we took advantage of BCG instillations, which increase local immune infiltration, to characterize immune cell populations in the urine of patients with NMIBC as a surrogate for the bladder tumor microenvironment. We observed an infiltration of neutrophils, T cells, monocytic myeloid-derived suppressor cells (M-MDSCs), and group 2 innate lymphoid cells (ILC2). Notably, patients with a T cell-to-MDSC ratio of less than 1 showed dramatically lower recurrence-free survival than did patients with a ratio of greater than 1. Analysis of early and later time points indicated that this patient dichotomy existed prior to BCG treatment. ILC2 frequency was associated with detectable IL-13 in the urine and correlated with the level of recruited M-MDSCs, which highly expressed IL-13 receptor α1. In vitro, ILC2 were increased and potently expressed IL-13 in the presence of BCG or tumor cells. IL-13 induced the preferential recruitment and suppressive function of monocytes. Thus, the T cell-to-MDSC balance, associated with a skewing toward type 2 immunity, may predict bladder tumor recurrence and influence the mortality of patients with muscle-invasive cancer. Moreover, these results underline the ILC2/IL-13 axis as a targetable pathway to curtail the M-MDSC compartment and improve bladder cancer treatment

    Innate Lymphoid Cells (ILCs) in anti-tumor immunity

    No full text
    Innate Lymphoid Cells (ILCs) are constituted of three différent functional subsets that mirror the three main CD4 T helper cell subsets: Th1, Th2 and Th17. In a first part of this thesis, we performed an in-depth study of the proportions and phenotype of ILCs present among the peripheral blood lymphocytes from healthy individuals. We then studied ILCs present in both healthy lymphoid and non lymphoid tissues as well as in patients bearing solid tumors. ILC proportions, phenotype and cytokine production are notably dysregulated in patients in a subset- and tumor-dependent manner. In this study, we focused on a previously unrecognized CD127+ c-KIT" CRTH2" CD56+ ILC population that we further studied in the second part. Based on extracellular, metabolic and transcriptomic profiles, we demonstrate that this population is distinct from conventional helper ILC and NK subsets. Given their high cytotoxic properties, we named them "ILC-killer" ("ILC-k"). ILC-k are able to mediate tumor cells lysis in an NKp30-, NKp80- and TRAIL-dependent, but KIR-independent manner. Analysis of ILC-k in Acute Myeloid Leukemia (AML) patients at diagnosis and remission revealed that their cytotoxic profile is impaired at diagnosis while restored upon remission. Overall, our data suggest that ILC-k might be targeted in cancer patients to improve clinical outcome. -- Les cellules lymphoïdes innées (ILCs) sont constituées de trois sous-groupes reflétant la classification des lymphocytes T auxiliaires en trois sous-populations : Th1, Th2 etTh17. Dans la première partie de cette thèse, nous avons caractérisé en profondeur la fréquence et le phénotype des ILCs dans le sang périphérique de donneurs sains. Nous avons ensuite analysé les ILCs présentes dans les tissus sains lymphoïdes et non lymphoïdes ainsi que chez les patients atteints de tumeurs solides. Leur proportion, leur phénotype et leur production de cytokines diffèrent notamment chez ces patients par rapport aux donneurs sains, et ce en fonction du sous-groupe d'ILC et du type de cancer. Cette première partie de résultats nous a également permis de constater l'existence d'un sous-groupe d'ILC au phénotype suivant : CD127+c-KIT" CRTH2" CD56+ CD16", qui n'a pas encore été mis en évidence dans les études publiées jusqu'à présent. Dans la seconde partie, nous nous sommes donc concentrés sur l'étude de ces cellules. Celles-ci sont en particulier bien distinctes des sous-groupes conventionnels d'ILCs et de cellules NKs, par leur profil extracellulaire, leur métabolisme et leur transcriptome. Nous les avons nommées « ILC-killer » (« ILC-k ») en raison de leur fort potentiel cytotoxique. Les ILC-k sont capables d'induire la lyse de cellules tumorales indépendamment des récepteurs KIRs en utilisant les voies des molécules NKp30, NKp80 et TRAIL. Chez les patients atteints de leucémie aiguë myéloïde, l'analyse des ILC- k aussi bien lors de leur diagnostic qu'à leur rémission nous a permis de démontrer que le profil cytotoxique de ces cellules est inhibé par la tumeur. Nos résultats suggèrent que les ILCs et, en particulier, les ILC-k, pourraient représenter de nouvelles cibles pour les thérapies anti-tumorales afin d'améliorer le pronostic des patients

    DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy.: Signaling pathways induced by 125I-RIT

    Get PDF
    International audienceINTRODUCTION: Low dose-rate radioimmunotherapy (RIT) using (125)I-labelled monoclonal antibodies ((125)I-mAbs) is associated with unexpected high cytotoxicity per Gy. METHODS: We investigated whether this hypersensitivity was due to lack of detection of DNA damage by the targeted cells. DNA damage was measured with the alkaline comet assay, gamma-H2AX foci and the micronucleus test in p53(-/-) and p53(+/+) HCT116 cells exposed to increasing activities of internalizing anti-HER1 (125)I-mAbs or non-internalizing anti-CEA (125)I-mAbs. The expression of proteins involved in radiation response and progression of cells through the cycle were determined. RESULTS: Cell hypersensitivity to low absorbed doses of anti-CEA (125)I-mAbs was not due to defect in DNA damage detection, since ATM (ataxia telangiectasia mutated gene), gamma-H2AX, p53 and p21 were activated in RIT-treated HCT116 cells and G2/M cell cycle arrest was observed. Moreover, the alkaline comet assay showed that DNA breaks accumulated when cells were placed at 4°C during exposure but were repaired under standard RIT conditions (37°C), suggesting that lesions detected under alkaline conditions (mostly DNA single strand breaks and alkali-labile sites) are efficiently repaired in treated cells. The level of gamma-H2AX protein corroborated by the level of foci measured in nuclei of treated cells was shown to accumulate with time thereby suggesting the continuous presence of DNA double strand breaks. This was accompanied by the formation of micronuclei. CONCLUSION: Hypersensitivity to non-internalizing (125)I-mAbs is not due to lack of detection of DNA damage after low absorbed dose-rates. However, DNA double strand breaks accumulate in cells exposed both to internalizing and non-internalizing (125)I-mAbs and lead to micronuclei formation. These results suggest impairment in DNA double strand breaks repair after low absorbed doses of (125)I-mAbs

    Apoptosis and p53 are not involved in the anti-tumor efficacy of (125)I-labeled monoclonal antibodies targeting the cell membrane.: Running title: 125I-RIT-induced cell death mechanisms

    No full text
    International audienceINTRODUCTION: (125)I-labeled monoclonal antibodies ((125)I-mAbs) can efficiently treat small solid tumors. Here, we investigated the role of apoptosis, autophagy and mitotic catastrophe in (125)I-mAb toxicity in p53(-/-) and p53(+/+) cancer cells. METHODS: We exposed p53(-/-) and p53(+/+) HCT116 cells to increasing activities of internalizing (cytoplasmic location) anti-HER1 (125)I-mAbs, or non-internalizing (cell surface location) anti-CEA (125)I-mAbs. For each targeting model we established the relationship between survival and mean nucleus absorbed dose using the MIRD formalism. RESULTS: In both p53(-/-) and p53(+/+) HCT116 cells, anti-CEA (125)I-mAbs were more cytotoxic per Gy than anti-HER1 (125)I-mAbs. Sensitivity to anti-CEA (125)I-mAbs was p53-independent, while sensitivity to anti-HER1 (125)I-mAbs was higher in p53(-/-) HCT 116 cells, suggesting that they act through different signaling pathways. Apoptosis was only induced in p53(+/+) HCT116 cells and could not explain cell membrane radiation sensitivity. Inhibition of autophagy did not modify the cell response to (125)I-mAbs. By contrast, mitotic death was similarly induced in both p53(-/-) and p53(+/+) HCT116 cells by the two types of (125)I-mAbs. We also showed using medium transfer experiments that γ-H2AX foci were produced in bystander cells. CONCLUSION: Cell membrane sensitivity to (125)I-mAbs is not mediated by apoptosis and is p53-independent. Bystander effects-mediated mitotic death could be involved in the efficacy of (125)I-mAbs binding cell surface receptors

    Impact of climate changes on vegetation and human societies during the Holocene in the South Caucasus (Vanevan, Armenia): A multiproxy approach including pollen, NPPs and brGDGTs

    No full text
    International audienceRelationships between steppe vegetation, human practices and climate changes in the past are crucial to disentangle human development in Eurasia. In this frame, our study investigates (1) modern pollen-vegetation relationships and (2) changes in vegetation, human activity and climate in the Holocene record of Vanevan peat (south-eastern shore of Lake Sevan, Armenia), using a multiproxy approach including sediment geochemistry (XRF), pollen, Non-Pollen Palynomorphs (NPPs), and branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs). Climate reconstructions are provided by (1) water-level changes, (2) brGDGTs, and (3) pollen transfer functions (multi-method approach: Modern Analogue Technique, Weighted Averaging Partial Least Squares regression, Random Forest, and Boosted Regression Trees). Modern pollen assemblages are selected along an altitudinal transect in Armenia. They show a dominance of Chenopodiaceae in semi-desert/steppe regions while meadows steppes, subalpine, and alpine meadows are dominated by Poaceae. Past vegetation is characterized by steppes dominated by Poaceae surrounded during the Mid-Holocene (8200-4200 a cal BP) by scarce open woodlands. Humans have influenced the local vegetation, mainly through their agricultural practices present since 5200 a cal BP with several intensification steps. Our reconstruction indicates a climate shift from a cold and arid Early Holocene toward a warmer and more humid Mid-Late Holocene. An aridification trend marks the last 5000 years causing a drop in water level, which allowed humans to live and cultivate on Lake Sevan shores. Arid events are recorded at 6.2 ka, 5.2 ka, 4.2 ka and 2.8 ka a cal BP, which are commonly related to multi-centennial-scale variations of Westerlies activity (North Atlantic Oscillation). Through our temperature reconstruction, we can assign (1) the 5.2 and 2.8 ka events as being cold and probably related to a strong Siberian High, and (2) the 4.2 ka event as being warm associated with high Arabian subtropical pressures in the South Caucasus and the Near East. Our study suggests a significant impact of these arid events on the Lake Sevan shore populations and they are consistent with cultural phases in the South Caucasus, thus showing the impact of climatic variations on cultural, land use and occupation mode development in this crossroad region between Europe, Africa and Asia

    Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth
    corecore