14 research outputs found

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    Get PDF
    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health

    Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales

    Get PDF
    RivFunction is a pan-European initiative that started in 2002 and was aimed at esta- blishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were exam- ined at >200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gra- dient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and addi- tional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian distur- bances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying impor- tant sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations. Thus, although many details still need to be resolved, litter decomposition holds considerable potential in some circumstances to capture impairment of stream ecosystem functioning. For instance, species traits associated with the body size and metabolic capacity of the con- sumers were often the main driver at local scales, and these were often translated into important determinants of otherwise apparently contingent effects at larger scales. Key insights gained from conducting continental scale studies included resolving the appar- ent paradox of inconsistent relationships between nutrients and decomposition rates, as the full complex multidimensional picture emerged from the large-scale dataset, of which only seemingly contradictory fragments had been seen previously

    Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs

    No full text
    P>1. Bioassessment in running waters has focused primarily on the impacts of organic pollution on community structure. Other stressors (e.g. invasive species) and impacts on ecosystem processes have been largely ignored in many riverine biomonitoring schemes, despite being required increasingly by environmental legislation. 2. Exotic riparian plants can exert potentially powerful stresses by altering both autochthonous and allochthonous trophic pathways. We examined the impact of Rhododendron ponticum on community structure and three key ecosystem processes (decomposition, primary production, and herbivory) in nine streams bordered by three characteristic vegetation types (deciduous woodland, pasture, or Rhododendron). 3. Community structure and ecosystem process rates differed among vegetation types, with autochthonous pathways being relatively more important in the pasture streams than in the woodland reference streams. Overall ecosystem functioning, however, was compromised in the invaded streams because both allochthonous and autochthonous inputs were impaired. Rhododendron's poor quality litter and densely shaded canopy suppressed decomposition rates and algal production, and the availability of resources to consumer assemblages. 4. Synthesis and applications. Combining measures of invertebrate abundance, rates of litter decomposition and algal production in future bioassessments of stream ecosystem functioning can help to make better informed management decisions and to develop more focused priorities for mediating the negative effects of riparian invasions. We provide a series of specific recommendations for dealing with invasive riparian plants in general, and Rhododendron in particular, in order to minimize their impacts on stream ecosystems. For instance, where the invader produces poor quality litter the canopy should be kept as open as possible over the stream channel to reduce impacts on algal production, thereby retaining alternative food chains that can be exploited by generalist consumers in the absence of viable detrital resources

    Stream Ecosystem Functioning in an Agricultural Landscape. The Importance of Terrestrial-Aquatic Linkages

    No full text
    The loss of native riparian vegetation and its replacement with non-native species or grazing land for agriculture is a worldwide phenomenon, but one that is prevalent in Europe, reflecting the heavily-modified nature of the continent’s landscape. The consequences of these riparian alterations for freshwater ecosystems remain largely unknown, largely because bioassessment has traditionally focused on the impacts of organic pollution on community structure. We addressed the need for a broader perspective, which encompasses changes at the catchment scale, by comparing ecosystem processes in woodland reference sites with those with altered riparian zones. We assessed a range of riparian modifications, including clearance for pasture and replacement of woodland with a range of low diversity plantations, in 100 streams to obtain a continental-scale perspective of the major types of alterations across Europe. Subsequently, we focused on pasture streams, as an especially prevalent widespread riparian alteration, by characterising their structural (e.g. invertebrate and fish communities) and functional (e.g. litter decomposition, algal production, herbivory) attributes in a country (Ireland) dominated by this type of landscape modification, via field and laboratory experiments. We found that microbes became increasingly important as agents of decomposition relative to macrofauna (invertebrates) in impacted sites in general and in pasture streams in particular. Resource quality of grass litter (e.g., carbon : nutrient ratios, lignin and cellulose content) was a key driver of decomposition rates in pasture streams. These systems also relied more heavily on autochthonous algal production than was the case in woodland streams, which were more detrital based. These findings suggest that these pasture streams might be fundamentally different from their native, ancestral woodland state, with a shift towards greater reliance on autochthonous-based processes. This could have a destabilizing effect on the dynamics of the food web relative to the slower, detrital-based pathways that dominate in woodland streams.3F10-AC72-52D0 | Verónica Ferreirainfo:eu-repo/semantics/publishedVersio

    Food webs: reconciling the structure and function of biodiversity

    No full text
    The global biodiversity crisis concerns not only unprecedented loss of species within communities, but also related consequences for ecosystem function. Community ecology focuses on patterns of species richness and community composition, whereas ecosystem ecology focuses on fluxes of energy and materials. Food webs provide a quantitative framework to combine these approaches and unify the study of biodiversity and ecosystem function. We summarise the progression of food-web ecology and the challenges in using the food-web approach. We identify five areas of research where these advances can continue, and be applied to global challenges. Finally, we describe what data are needed in the next generation of food-web studies to reconcile the structure and function of biodiversity.No Full Tex

    Continental-scale effects of nutrient pollution on stream ecosystem functioning

    No full text
    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health.3F10-AC72-52D0 | Verónica Ferreirainfo:eu-repo/semantics/publishedVersio
    corecore