124 research outputs found

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    Surface Ocean pCO2 Seasonality and Sea-Air CO2 Flux Estimates for the North American East Coast

    Get PDF
    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010

    Vessel Formation Is Induced Prior to the Appearance of Cartilage in BMP-2-Mediated Heterotopic Ossification

    Get PDF
    Heterotopic ossification (HO), or endochondral bone formation at nonskeletal sites, often results from traumatic injury and can lead to devastating consequences. Alternatively, the ability to harness this phenomenon would greatly enhance current orthopedic tools for treating segmental bone defects. Thus, understanding the earliest events in this process potentially would allow us to design more targeted therapies to either block or enhance this process. Using a murine model of HO induced by delivery of adenovirus-transduced cells expressing bone morphogenetic protein 2 (BMP-2), we show here that one of the earliest stages in this process is the establishment of new vessels prior to the appearance of cartilage. As early as 48 hours after induction of HO, we observed the appearance of brown adipocytes expressing vascular endothelial growth factors (VEGFs) simultaneous with endothelial progenitor replication. This was determined by using a murine model that possesses the VEGF receptor 2 (Flk1) promoter containing an endothelial cell enhancer driving the expression of nuclear-localized yellow fluorescent protein (YFP). Expression of this marker has been shown previously to correlate with the establishment of new vasculature, and the nuclear localization of YFP expression allowed us to quantify changes in endothelial cell numbers. We found a significant increase in Flk1-H2B::YFP cells in BMP-2-treated animals compared with controls. The increase in endothelial progenitors occurred 3 days prior to the appearance of early cartilage. The data collectively suggest that vascular remodeling and growth may be essential to modify the microenvironment and enable engraftment of the necessary progenitors to form endochondral bone. © 2010 American Society for Bone and Mineral Research

    Telehealth for patients at high risk of cardiovascular disease: pragmatic randomised controlled trial

    Get PDF
    Objective: To assess whether non-clinical staff can effectively manage people at high risk of cardiovascular disease using digital health technologies. Design: Pragmatic, multicentre, randomised controlled trial. Setting: 42 general practices in three areas of England. Participants: Between 3 December 2012 and 23 July 2013 we recruited 641 adults aged 40 to 74 years with a 10 year cardiovascular disease risk of 20% or more, no previous cardiovascular event, at least one modifiable risk factor (systolic blood pressure ≥140 mm Hg, body mass index ≥30, current smoker), and access to a telephone, the internet, and email. Participants were individually allocated to intervention (n=325) or control (n=316) groups using automated randomisation stratified by site, minimised by practice and baseline risk score. Interventions: Intervention was the Healthlines service (alongside usual care), comprising regular telephone calls from trained lay health advisors following scripts generated by interactive software. Advisors facilitated self-management by supporting participants to use online resources to reduce risk factors, and sought to optimise drug use, improve treatment adherence, and encourage healthier lifestyles. The control group comprised usual care alone. Main outcome measures: The primary outcome was the proportion of participants responding to treatment, defined as maintaining or reducing their cardiovascular risk after 12 months. Outcomes were collected six and 12 months after randomisation and analysed masked. Participants were not masked. Results: 50% (148/295) of participants in the intervention group responded to treatment compared with 43% (124/291) in the control group (adjusted odds ratio 1.3, 95% confidence interval 1.0 to 1.9; number needed to treat=13); a difference possibly due to chance (P=0.08). The intervention was associated with reductions in blood pressure (difference in mean systolic −2.7 mm Hg (95% confidence interval −4.7 to −0.6 mm Hg), mean diastolic −2.8 (−4.0 to −1.6 mm Hg); weight −1.0 kg (−1.8 to −0.3 kg), and body mass index −0.4 (−0.6 to −0.1) but not cholesterol −0.1 (−0.2 to 0.0), smoking status (adjusted odds ratio 0.4, 0.2 to 1.0), or overall cardiovascular risk as a continuous measure (−0.4, −1.2 to 0.3)). The intervention was associated with improvements in diet, physical activity, drug adherence, and satisfaction with access to care, treatment received, and care coordination. One serious related adverse event occurred, when a participant was admitted to hospital with low blood pressure. Conclusions: This evidence based telehealth approach was associated with small clinical benefits for a minority of people with high cardiovascular risk, and there was no overall improvement in average risk. The Healthlines service was, however, associated with improvements in some risk behaviours, and in perceptions of support and access to care

    Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐12605742018-10-0
    corecore